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We show that optically induced photonic lattices in a nonconventionally biased photorefractive crystal can
support the formation of discrete and gap solitons owing to a mechanism that differs from the conventional
screening effect. Both the bias direction and the lattice orientation can dramatically influence the nonlinear
beam-propagation dynamics. We demonstrate a transition from self-focusing to -defocusing and from dis-
crete to gap solitons solely by adjusting the optical-beam orientation. © 2008 Optical Society of America
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Optical waves propagating in photonic lattices have
attracted a great deal of research interest [1,2]. Pho-
tonic lattices created by optical induction method ex-
hibit large reconfigurability for controllable linear
and nonlinear propagations at moderate laser powers
[3-9]. Such induced lattices provide ideal settings for
studying the basic properties of wave propagation in
periodic structures. By far, photorefractive (PR) crys-
tals biased with an electric field have been one of the
most popular materials for demonstrating a variety
of discrete phenomena, including lattice solitons
[3-7], bandgap guidance by defects [8], and Anderson
localization in disordered lattices [9]. In all these
studies, the experiments were performed in conven-
tionally biased PR crystals, where self-focusing or
self-defocusing nonlinearity was achieved by revers-
ing the polarity of the external bias field.

Recently, we proposed to use a nonconventionally
biased (NCB) PR crystal for the generation of ellipti-
cal bright solitons in homogenous media [10]. It was
shown that, in the continuum case, spatial solitons
can exist in a NCB crystal but with much richer dy-
namics, depending on the relative orientations of the
crystalline ¢ axis, the bias field, and the beam polar-
ization. In this Letter, we report our theoretical and
experimental results on the formation of one-
dimensional (1D) lattice solitons under NCB condi-
tions. We found that photonic lattices and lattice soli-
tons can also be established under these conditions,
but owing to a mechanism quite different from the
conventional screening effect. Even surprisingly,
switching between self-focusing and -defocusing non-
linearities can be achieved solely by changing the
optical-beam orientation, thus facilitating the obser-
vation of transition between discrete and gap solitons
without the need of reversing the polarity of the bias
electric field.

We first formulate a dimensionless model to de-
scribe the nonlinear propagation of an optical (probe)
beam in an optically induced 1D photonic lattice un-
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der NCB conditions. Figure 1(a) depicts our coordi-
nate system, where the y axis is parallel to the direc-
tion of the intensity gradients VI of the stripe probe
beam and the lattice beam and both beams propagate
collinearly along the z axis. The angles of the bias
field E, and VI with respect to the crystalline ¢ axis
are denoted by 6, and 6;, respectively. Then the
steady-state propagation of the probe beam in the in-
duced photonic lattice is governed by [3-5,10-12]
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where K(60)=cos(6;— 6,)cos 6;, B(y,z) is the amplitude
of the extraordinarily polarized probe beam and I,
=1,y cos?(my/d) is the intensity of the ordinarily po-
larized lattice beam.

According to the linear electro-optic effect, it can be
easily obtained that only the c-axis component of an
electric field can introduce perceptible index modula-
tion in a PR crystal, and the induced rotation of the
crystalline ¢ axis due to other components can be ne-
glected. To establish our theoretical model, we con-
sider only the c-axis component of the electric field
and take the crystal as a uniaxial crystal for NCB
conditions. Under the above assumptions, the PR
process in a NCB crystal can be described as follows.
First, the c-axis component of the bias field E, intro-
duces a uniform index change Anyx—|E|cos 6, in the
crystal. Second, the light-excited charge carriers
separate under the effective bias field E 4 [11] to form
a space-charge field E,. Third, the c-axis component
of E,, ie., E, causes an index change én
o |Eo|K(6)I/(1+I) in addition to An,, where I is light
intensity. Thus total index change An in the crystal is
equal to Any+dn. Since Ang is uniform, the types of
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Fig. 1. (Color online) (a) Geometry of the coordinate sys-

tem; (b) K(6) versus 6, and 6;; (¢c) K(6) versus 6, at 6;=45°
(top) and K(6) versus 6; at 6,=90° (bottom); (d) distribu-
tions of én.

the nonlinearities of the crystal, no matter the sign
and amplitude of An, depend solely on the sign of én
and thus on K(6), i.e., K(6)>0 (<0) leads to self-
focusing (-defocusing).

According to different geometric orientations, K(6)
has different values. Figures 1(b) and 1(c) depict K(6)
versus 6, and 6;. In Fig. 1(c), the regions under the
dashed lines correspond to the self-defocusing cases.
It can be seen from Figs. 1(b) and 1(c) that a switch
between self-focusing and -defocusing can be
achieved by altering either the bias direction or the
beam orientation. To illustrate the essential differ-
ences between the conventional and nonconventional
cases intuitively, we summarize the index changes
induced by a Gaussian probe beam in the crystal un-
der different bias conditions in Fig. 1(d), where for a
fixed 6,, the amplitude of én varies with 6;, and the
shaded regions depict the variation ranges of én. By
setting 6,=6;=0° or 180°, the NCB case governed by
Eq. (1) will be degenerated into the conventional one
[see [5], Eq. (1)], and 6,=0° (180°) corresponds to the
self-focusing (-defocusing) nonlinearity [see Fig. 1(d)],
in which the crystal index in the illuminated regions
is less changed than that in the dark regions owing to
the screening mechanism, and the variation ranges
of the amplitude of én coincide with the results pre-
sented in [11]. Under NCB conditions, the values of
Ang vary with 6, [see the middle three columns in
Fig. 1(d)]. In particular, at |6,|=90°, Any=0, reflecting
a mechanism that is very different from the conven-
tional screening effect. Furthermore, it is unexpected
that, owing to the NCB fields, one can switch the type
of the nonlinearities solely by changing 6;, i.e., the
optical-beam orientation. This will enable an opti-
cally induced transition between discrete and gap
solitons without the need to reverse the bias field, as
we shall demonstrate below.

Let us focus on a special case of NCB condition
with 6,=90°, in which the bias field is perpendicular
to the ¢ axis. Under such a condition, #;=45° and
—45° correspond to the self-focusing and -defocusing
cases, respectively [see Fig. 1(c)]. By solving Eq. (1),
the numerical results for the evolutions of an input
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1D Gaussian beam up to z=2 c¢m in induced photonic
lattices are displayed in Fig. 2, where the top (bot-
tom) row is for #;=45° (-45°). For these simulations,
the parameters are chosen to match those from our
experiments: The width of the probe beam is 10 um
(in FWHM), d=20 um, and E;=400 V/mm. The
peak-intensity ratios of the probe and the lattice
beam are 1:1.5 and 2:1 for the cases of 6;=45° and
—45°, respectively. Without nonlinearity, the probe
beam undergoes discrete diffraction [Figs. 2(al) and
2(b1)]. With nonlinearity, the balance between self-
focusing or -defocusing and discrete diffraction leads
to stable self-trapped states [Figs. 2(a2) and 2(b2)].
By comparing the interferograms shown in Figs.
2(a3) and 2(b3), it is obvious that #;=45° corresponds
to a (semi-infinite gap) discrete soliton with a uni-
form phase structure and -45° corresponds to a
(Bragg reflection) gap soliton with a staggered phase
structure.

To seek soliton solutions corresponding to the re-
sults shown in Fig. 2, we solve Eq. (1) in the form
B(y,z)=b(y)exp(iBz), where B is a propagation con-
stant, and the real envelope b(y) satisfies the follow-
ing equation:
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Under linear conditions, the diffraction relation can
be obtained by the Bloch—Floquet theory. With non-
linearity, the soliton solutions can be found by using
numerical iteration procedures. The bandgap struc-
tures and typical soliton solutions are shown in Fig.
3. As expected, the propagation constants B for the
discrete solitons lie in the semi-infinite gap, whereas
those for the gap solitons reside in the first Bragg-
reflection gap. The soliton peak intensity increases or
decreases monotonously with B, while higher peak
intensities correspond to stronger localizations.

The experimental setup for our demonstration is
similar to that used in [6]. The photonic lattices are
created in a SBN:60 crystal with dimensions of 5
X 10X 5(c) mm? by sending a partially coherent beam
(A=488 nm) through an amplitude mask. An addi-
tional probe laser beam (taken from the same laser)

Fig. 2. (Color online) Linear (left) and nonlinear (middle)
beam evolutions with 6;=45° (top) and -45° (bottom) at
Ej Lc. The curves in (a) and (b) depict beam profiles at z
=1 cm. The right column corresponds to the interferogram
of the nonlinear output beam at z=1 cm.
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Fig. 3. (Color online) (a) and (c) bandgap structures

(bands are shaded) and soliton peak intensity curves; (b)
and (d) soliton profiles found at the circles marked in (a)
and (c). The top and the bottom rows are for the cases with
0;=45° and -45° at E, 1 c, respectively.

focused by a cylindrical lens propagates collinearly
with the lattice beam. The amplitude mask and the
cylindrical lens can each be rotated freely in the
transverse plane. For observation of discrete and gap
solitons, the intensity ratios between the probe beam
(about 10 um FWHM) and the lattice beam (about
20 um spacing) are adjusted to be about 1:1.5 and
2:1, respectively. The polarization direction of the in-
put probe (lattice) beam is adjusted to be parallel
(perpendicular) to the ¢ axis, and the bias direction is
perpendicular to the ¢ axis. To observe discrete dif-
fractions and self-localized states of the probe beam,
we first block off the probe beam until the lattice
structures arrive in steady state. We then open the
probe beam and monitor its linear-to-nonlinear evo-
lution, taking advantage of the noninstantaneous re-
sponse of the PR crystal [3-6].

Typical experimental results corresponding to Fig.
2 are shown in Fig. 4, where 4(a)—4(c) are the inten-
sity patterns of the probe beam at input, linear out-
put without lattice, and the lattice beam. Figure 4(d)
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Fig. 4. (Color online) Experimental results. (a) and (b) In-
put and linear output probe beam pattern without lattice;
(c) lattice beam pattern; (d) geometry of beam orientation;
(e)—(f) probe-beam output pattern for (1) discrete diffrac-
tion, (2) self-trapping, (3) interference of soliton output,
and (4) nonlinear output without lattice for (e) ;=45° and
(f) —-45° at Ey L c, respectively.

illustrates the beam orientations for observing tran-
sition between discrete and gap solitons at E, lc,
which are displayed in Figs. 4(e) and 4(f). For conve-
nience of comparison, the beam patterns correspond-
ing to Figs. 4(e) and 4(f) are all rotated in transverse
plane by 45°. The bias voltages for observations of
Figs. 4(e) and 4(f) are kept at the same 2.0 kV. It can
be seen from Fig. 4 that, in the absence of nonlinear-
ity, the probe beam undergoes discrete diffractions.
While in the presence of nonlinearity, the probe beam
evolves into self-localized states. The interferograms
shown in Figs. 4(e3) and 4(f3) illustrate clearly that
the discrete and gap solitons possess uniform and
staggered phase structures, respectively. Remark-
ably, a perfect transition from self-focusing to self-
defocusing [Figs. 4(e4) and 4(f4)] and from a discrete
soliton to a gap soliton [Figs. 4(e3) and 4(f3)] is real-
ized solely by adjusting the beam orientation. These
observations are in good agreement with the numeri-
cal results.

In summary, we have demonstrated an optically in-
duced transition from self-focusing and discrete soli-
tons to self-defocusing and gap solitons without the
need of electric bias reversal. Our results bring about
a novel approach for bandgap engineering and dif-
fraction management of light-induced photonic lat-
tices. We expect that a similar approach could be ap-
plied to the 2D configuration, in which more-
complicated wave phenomena are expected.
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