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Two-dimensional defect modes in optically induced photonic lattices

Jiandong Wang, Jianke Yang∗

Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA

Zhigang Chen
Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132, USA

In this article, localized linear defect modes due to bandgap guidance in two-dimensional pho-
tonic lattices with localized or non-localized defects are investigated theoretically. First, when the
defect is localized and weak, eigenvalues of defect modes bifurcated from edges of Bloch bands are
derived analytically. It is shown that in an attractive (repulsive) defect, defect modes bifurcate out
from Bloch-band edges with normal (anomalous) diffraction coefficients. Furthermore, distances be-
tween defect-mode eigenvalues and Bloch-band edges are exponentially small functions of the defect
strength, which is very different from the one-dimensional case where such distances are quadrat-
ically small with the defect strength. It is also found that some defect-mode branches bifurcate
not from Bloch-band edges, but from quasi-edge points within Bloch bands, which is very unusual.
Second, when the defect is localized but strong, defect modes are determined numerically. It is
shown that both the repulsive and attractive defects can support various types of defect modes such
as fundamental, dipole, quadrupole, and vortex modes. These modes reside in various bandgaps
of the photonic lattice. As the defect strength increases, defect modes move from lower bandgaps
to higher ones when the defect is repulsive, but remain within each bandgap when the defect is
attractive, similar to the one-dimensional case. The same phenomena are observed when the defect
is held fixed while the applied dc field (which controls the lattice potential) increases. Lastly, if
the defect is non-localized (i.e. it persists at large distances in the lattice), it is shown that defect
modes can be embedded inside the continuous spectrum, and they can bifurcate out from edges of
the continuous spectrum algebraically rather than exponentially.

PACS numbers: 42.70.Qs, 42.65.Tg

I. INTRODUCTION

Study of light propagation in periodic media such as photonic crystals and optically induced photonic lattices is of
great interest to both fundamental physics and applications [1, 2, 3, 4]. It is well known that the unique feature of
such periodic systems is the existence of bandgap structures in its linear spectrum. Inside the bands, eigenmodes of
its spectrum are Bloch waves, while inside bandgaps, wave propagation is forbidden because of the repeated Bragg
reflections. To guide light in periodic media, one of the convenient ways is to introduce a defect into the medium.
The defect can support linear localized modes (called defect modes) inside bandgaps of the periodic medium. Such
modes could only propagate along the defect direction (their propagation along other directions is forbidden for being
inside bandgaps), thus defect guidance (or bandgap guidance) of light is realized.

Defects and the corresponding defect modes (DMs) have been widely investigated in the field of photonic crystals
[1, 2], where bandgaps and defect modes are in the temporal frequency domains. Recently, reconfigurable optically
induced photonic lattices in photorefractive crystals with and without defects were successfully generated [5, 6, 7, 8].
In photonic lattices, bandgaps are in the spatial frequency domains. Linear DMs in one-dimensional (1D) photonic
lattices have been analyzed both theoretically and experimentally in [8, 9, 10]. Nonlinear defect solitons in 1D photonic
lattices have also been theoretically explored [11, 12] (see also a study of DMs and defect solitons in 1D waveguide
arrays in [13]). A more interesting subject is DMs in 2D photonic lattices, where richer light-guiding possibilities can
arise. Recently, we have observed that a localized defect in 2D lattices can guide not only fundamental modes, but also
higher-order modes with delicate tail structures [7]. However, our theoretical understanding on such new types of 2D
DM structures is still far from satisfactory. For instance, it is still unclear what types of DMs a 2D defect can possibly
support, and how localized these DMs can be in defects of various depths. We should mention that in uniformly
periodic photonic lattices, a number of nonlinear localized modes such as fundamental, dipole, vortex, dipole-array
and vortex-array solitons have been reported [5, 6, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Solitons in Bessel-ring lattices and
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2D quasi-periodic lattices have been reported as well [23, 24, 25]. These nonlinear modes may be regarded as linear
DMs of the defect induced by solitons themselves. Hence studies of linear DMs in defective lattices and nonlinear
solitons in uniform lattices can stimulate each other. Indeed, many types of linear DMs we will report in this paper
do resemble certain types of strongly localized solitons in 2D uniform lattices (see [20, 21, 22]). However, many
differences exist between solitons in uniform lattices and linear DMs in defective lattices. For instance, low-amplitude
solitons in uniform lattices are very broad and occupy many lattice sites, thus the “defects” these solitons generate
are very different from the single-site defects as created in the experiments of [7] and considered in several sections of
this paper. Another difference is that, in uniform lattices, centers of solitons can be located at two positions (on-site
and off-site) in the 1D case [26] and four positions at or between lattice sites in the 2D case [22]. However, in defective
lattices, linear DMs can only be centered at the defect site. Due to these differences, previous results on solitons in
uniform lattices can not be naively copied over to linear DMs.

In this article, linear localized DMs in 2D optically induced photonic lattices with localized or non-localized defects
are systematically studied theoretically. For localized defects, we show numerically that both the attractive and
repulsive defects can support various types of 2D DMs such as fundamental, dipole, quadrupole, and vortex modes.
These modes reside in various bandgaps of the photonic lattice. When the defect is weak, DMs are further studied
analytically by asymptotic methods. We show that in a weak repulsive defect, DMs bifurcate out from Bloch-band
edges with anomalous diffraction coefficients. The situation is opposite for attractive defects. We also show that
distances between DM eigenvalues and Bloch-band edges are exponentially small functions of the defect strength,
which is very different from the 1D case where such dependence is quadratic. In addition, we find that some DM
branches bifurcate not from Bloch-band edges, but from quasi-edge points within Bloch bands, which is very unusual.
As the defect strength increases, DMs move from lower bandgaps to higher ones when the defect is repulsive, but
remain within each bandgap when the defect is attractive. The same phenomena are observed when the defect is
held fixed while the applied dc field (which controls the lattice potential) increases. If the defect is non-localized (i.e.
it does not disappear at large distances in the lattice), we show that DMs exhibit some new features, such as DMs
can be embedded inside the continuous spectrum, and they can bifurcate out from edges of the continuous spectrum
algebraically rather than exponentially.

II. THE THEORETICAL MODEL

We begin our study by considering one ordinarily polarized 2D square-lattice beam with a localized defect and
one extraordinarily polarized probe beam with very low intensity launched simultaneously into a photorefractive
crystal. The two beams are mutually incoherent, and the defective lattice beam is assumed to be uniform along the
propagation direction (such defective 2D lattices have been created in our earlier experiments [7]). In this situation,
the dimensionless governing equation for the probe beam is [5, 10, 27, 28]:

iUz + Uxx + Uyy − E0

1 + IL(x, y)
U = 0. (2.1)

Here U is the slowly-varying amplitude of the probe beam, (x, y) are transverse distances (in units of D/π with D
being the lattice spacing), z is the propagation distance (in units of 2k1D

2/π2), E0 is the applied dc field (in units of
π2/(k2

0n
4
eD

2r33)),

IL = I0 cos2(x) cos2(y)[1 + ǫFD(x, y)] (2.2)

is the intensity function of the photonic lattice (normalized by Id+Ib, where Id is the dark irradiance of the crystal and
Ib the background illumination), I0 is the peak intensity of the otherwise uniform photonic lattice, FD(x, y) describes
the shape of the defect, ǫ controls the strength of the defect, k0 = 2π/λ0 is the wave number (λ0 is the wavelength),
k1 = k0ne, ne is the unperturbed refractive index, and r33 is the electro-optic coefficient of the crystal. Notice that the
period of the square lattice has been normalized to be π. For localized defects which we are considering in this section
as well as sections III and IV, FD(x, y) is a localized function (the case of non-localized defects will be considered in
Sec. V). In our numerical computations, for simplicity, we choose FD(x, y) to be [7, 10]

FD(x, y) = exp[−(x2 + y2)4/128], (2.3)

which describes a single-site defect. When ǫ > 0, the lattice intensity IL at the defect site is higher than that at the
surrounding regions, and a defect like this is called an attractive defect. Otherwise, the defect is called a repulsive
one. The defected lattice profiles with ǫ = ±0.9 will be displayed later in the text (see Figs. 5 and 7). Throughout
this paper (except in section V), we will choose the lattice peak intensity to be I0 = 6.
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FIG. 1: (a) Diffraction relation of the uniform lattice potential (2.8) with E0 = 15 and I0 = 6 in the reduced Brillouin zone
along the direction of Γ → X → M → Γ. Shaded: first three Bloch bands. (b) Potential (i.e. effective refractive index change)
(2.8) in the (x, y) plane. (c) The first Brillouin zone of the 2D lattice in the reciprocal lattice space.

Localized defect modes in Eq. (2.1) are sought in the form of

U(x, y; z) = u(x, y) exp(−iµz), (2.4)

where µ is the propagation constant, and u(x, y) is a localized function in x and y. After substituting the above
expression into Eq. (2.1), a linear eigenvalue equation for u(x, y) is derived:

uxx + uyy + [µ− E0

1 + IL(x, y)
]u = 0. (2.5)

In the rest of this paper, we will comprehensively analyze DMs in this 2D Schrödinger equation with defective lattice
potentials by both analytical and numerical techniques.

Before the analysis of DMs, let us first look at the diffraction relation and bandgap structure of Eq. (2.5) without
defects (i.e., ǫ = 0). According to the Bloch theorem, eigenfunctions of Eq. (2.5) can be sought in the form of

u(x, y) = eik1x+ik2yG(x, y; k1, k2), µ = µ(k1, k2), (2.6)

where µ = µ(k1, k2) is the diffraction relation, wavenumbers k1, k2 are in the first Brillouin zone, i.e. −1 ≤ k1, k2 ≤ 1,
and G(x, y; k1, k2) is a periodic function in x and y with the same period π (in normalized units) as the uniform lattice
of (2.2). By substituting the above Bloch solution into Eq. (2.5) (with ǫ = 0), we find that the diffraction relation
µ(k1, k2) of our 2D uniform lattice will be obtained by solving the following eigenvalue problem

[(∂x + ik1)
2 + (∂y + ik2)

2 + V (x, y)]G(x, y) = −µG(x, y) (2.7)

with the uniform periodic potential

V (x, y) = − E0

1 + I0 cos2(x) cos2(y)
. (2.8)

Figure 1 shows the diffraction relation of Eq. (2.5) along three characteristic high-symmetry directions (Γ → X →
M → Γ) of the irreducible Brillouin zone. It can be seen that there exist three complete gaps which are named the
semi-infinite, first and second gaps respectively. They correspond to the white areas in Figure 1 from the bottom to
the top, separated by the shaded Bloch bands.

Loosely speaking, a lattice with an attractive defect is like a uniform lattice superimposed with a bright beam (soli-
ton) under self-focusing nonlinearity, while a lattice with a repulsive defect corresponds to that under self-defocusing
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nonlinearity. It is well known that spatial solitons can be formed if the diffraction of the medium is normal (corre-
sponding to µ′′(k) > 0 in our current notations), and the nonlinearity of the medium is self-focusing; or the diffraction
is anomalous (µ′′(k) < 0) and the nonlinearity is self-defocusing. From Figure 1(a), we can see that the diffraction
relation µ(k1, k2) is normal at the lower edge of every band, and anomalous at the upper edge of every band. Thus it
can be anticipated that in a weak attractive defect, DMs will bifurcate out from the lower edge of every Bloch band;
while in a weak repulsive defect, DMs will bifurcate out from the upper edge of every Bloch band. For 1D defects,
this heuristic argument has been fully confirmed in [10]. For 2D defects, it will be validated in this paper as well. Of
course, such heuristic arguments can not offer us any insight on quantitative behaviors of DM bifurcations. In the
1D case, it has been shown that eigenvalues of DMs depend on the defect strength ǫ quadratically when the defect is
weak [10]. For 2D defects, DM eigenvalues turn out to be exponentially small with the defect strength ǫ (see below),
which is distinctively different from the 1D case. In the next section, we will study in detail how DMs bifurcate from
edges of Bloch bands both analytically and numerically. Another interesting phenomenon which we will demonstrate
there is that some DM branches do not bifurcate from Bloch-band edges. Rather, they bifurcate from points inside

Bloch bands.

III. DEPENDENCE OF DEFECT MODES ON THE STRENGTH ǫ OF LOCALIZED DEFECTS

In this section, we consider DMs in the model equations (2.1)-(2.2) under localized defects, and investigate how
they depend on the defect strength ǫ. First, we analytically study how DMs bifurcate from edges of Bloch bands
when the defect is weak. The method we will use is analogous to one used in [29] for eigenvalue bifurcations in the
Schrödinger equation with a weak radially symmetric potential. Second, we numerically determine various types of
DMs under both weak and strong defects of the form (2.3) by directly solving the 2D eigenvalue problem (2.5). The
numerical method we use is a power-conserving squared-operator iteration method developed in [30].

A. Bifurcations of defect modes from Bloch-band edges in weak localized defects

Consider the general two-dimensional perturbed Hill’s equation

ψxx + ψyy + [µ+ V (x, y)]ψ = ǫf(x, y)ψ, (3.1)

where the unperturbed potential function V (x, y) is periodic along both the x and y directions with periods T1 and
T2 respectively, the perturbation to the potential, f(x, y), is a 2D-localized defect function in the (x, y) plane (i.e.
f(x, y) → 0 as (x, y) → ∞), and ǫ ≪ 1. Application of our general results on Eq. (3.1) to the specific case of Eq.
(2.5) will be given in the end of this subsection. Note that the 2D-localization assumption on the function f(x, y) is
important for the analysis below. If f(x, y) is not 2D-localized, then DM bifurcation behaviors could be quite different
(see section V).

When ǫ = 0, Eq. (3.1) admits Bloch solutions of the form

ψ(x, y) = Bn(x, y; k1, k2) ≡ eik1x+ik2yGn(x, y; k1, k2), µ = µn(k1, k2), (3.2)

where µ = µn(k1, k2) is the diffraction relation of the n-th Bloch surface, (k1, k2) lies in the first Brillouin zone, i.e.
−π/T1 ≤ k1 ≤ π/T1, −π/T2 ≤ k2 ≤ π/T2, and Gn(x, y; k1, k2) is a periodic function in both x and y with periods
T1 and T2 respectively. All these Bloch modes {Bn(x, y; k1, k2), (k1, k2) ∈ the Brillouin zone, n = 1, 2, . . .} form a
complete set [31]. In addition, the orthogonality condition between these Bloch modes is

∫

∞

−∞

∫

∞

−∞

B∗

m(x, y; k1, k2)Bn(x, y; k̂1, k̂2)dxdy = (2π)2 δ(k1 − k̂1)δ(k2 − k̂2)δ(m− n). (3.3)

Here the Bloch functions have been normalized by

∫ T1

0 dx
∫ T2

0 dy|Gn(x, y; k1, k2)|2
T1T2

= 1,

δ(.) is the δ-function, and the superscript “*” represents complex conjugation. When ǫ 6= 0, localized eigenfunctions
(i.e. DMs) can bifurcate out from edges of Bloch bands into band gaps. Asymptotic analysis of these DMs for ǫ≪ 1
will be presented below.

Consider bifurcations of defect modes from an edge point µ = µc of the n-th Bloch diffraction surface. If two
or more Bloch diffraction surfaces share the same edge point, each diffraction surface would generate its own defect
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mode upon bifurcation, thus one could treat each diffraction surface separately. After bifurcation, the propagation
constant µ of the defect mode will enter the band gap adjacent to the diffraction surface. Without loss of generality,
we assume that the edge point of this diffraction surface is located at a Γ symmetry point of the Brillouin zone where
(k1, k2) = (0, 0). If the bifurcation point is located at other points such as M or X points, the analysis would remain
the same.

When ǫ 6= 0, defect modes can be expanded into Bloch waves as

ψ (x, y) =

∞
∑

n=1

∫ π/T1

−π/T1

dk1

∫ π/T2

−π/T2

dk2 αn(k1, k2)Bn(x, y; k1, k2), (3.4)

where αn(k1, k2) is the Bloch-mode coefficient in the expansion. In the remainder of this subsection, unless otherwise
indicated, integrations for dk1 and dk2 are always over the first Brillouin zone, i.e. the lower and upper limits for k1

and k2 in the integrals are always {−π/T1, π/T1} and {−π/T2, π/T2} respectively, thus such lower and upper limits
will be omitted below.

When solution expansion (3.4) is substituted into the left hand side of Eq. (3.1), we get

∞
∑

n=1

∫∫

φn(k1, k2)Bn(x, y; k1, k2) dk1dk2 = ǫf(x, y)ψ(x, y), (3.5)

where φn(k1, k2) is defined as

φn(k1, k2) ≡ αn(k1, k2) [µ− µn(k1, k2)] . (3.6)

Due to our localization assumption on the defect function f(x, y), the right hand side of Eq. (3.5) is a 2D-localized
function, thus its Bloch-expansion coefficient φn(k1, k2) is uniformly bounded in the Brillouin zone for all values of n
and ǫ. When solution expansion (3.4) is further substituted into the right hand side of Eq. (3.5) and orthogonality
conditions (3.3) utilized, we find that φn(k1, k2) satisfies the following integral equation

φn(k1, k2) =
ǫ

(2π)2

∞
∑

m=1

∫∫

φm(k̂1, k̂2)

µ− µm(k̂1, k̂2)
Wm,n(k1, k2, k̂1, k̂2)dk̂1dk̂2, (3.7)

where function Wm,n in the kernel is defined as

Wm,n(k1, k2, k̂1, k̂2) =

∫

∞

−∞

∫

∞

−∞

f(x, y)B∗

n(x, y; k1, k2)Bm(x, y; k̂1, k̂2)dxdy. (3.8)

Again, since f(x, y) is a 2D-localized function, Wm,n(k1, k2, k̂1, k̂2) is also uniformly bounded for all (k1, k2) and

(k̂1, k̂2) points in the Brillouin zone. The fact of functions φn and Wm,n being uniformly bounded is important in
the following calculations. Otherwise (when f(x, y) is not 2D-localized, for instance), the results below would not be
valid.

At the edge point µ = µc, ∂µn/∂k1 = ∂µn/∂k2 = 0. For simplicity, we also assume that ∂2µn/∂k1∂k2 = 0 at this
edge point — an assumption which is always satisfied for Eqs. (2.1)-(2.3) we considered in Sec. 2 due to symmetries of
its defective lattice. If ∂2µn/∂k1∂k2 6= 0 in some other problems, the analysis below only needs minor modifications.
Under the above assumption, the local diffraction function near a Γ-symmetry edge point can be expanded as

µn(k1, k2) = µc + γ1k
2
1 + γ2k

2
2 + o(k2

1 , k1k2, k
2
2), (3.9)

where

γ1 =
1

2

∂2µn

∂k2
1

∣

∣

∣

∣

(0,0)

, γ2 =
1

2

∂2µn

∂k2
2

∣

∣

∣

∣

(0,0)

. (3.10)

Since µ = µc is an edge point, which should certainly be a local maximum or minimum point of the n-th diffraction
surface, clearly γ1 and γ2 must be of the same sign, i.e. γ1γ2 > 0. The DM eigenvalue can be written as

µ = µc + σh2, (3.11)

where σ = ±1, and 0 < h(ǫ) ≪ 1 when ǫ≪ 1. The dependence of h on ǫ will be determined next.
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When Eqs. (3.9) and (3.11) are substituted into Eq. (3.7), we see that only a single term in the summation with

index m = n makes O(φn) contribution. In this term, the denominator µ − µn(k̂1, k̂2) is very small near the Γ

symmetry point (bifurcation point) (k̂1, k̂2) = (0, 0), which makes it O(φn) rather than O(ǫφn). The rest of the terms

in the summation give O(ǫφm) contributions, because the denominators µ − µm(k̂1, k̂2) in such terms are not small
anywhere in the first Brillouin zone. Thus

φn(k1, k2) =
ǫ

(2π)2

∫∫

φn(k̂1, k̂2)

µ− µn(k̂1, k̂2)
Wn,n(k1, k2, k̂1, k̂2)dk̂1dk̂2 +O(ǫφn). (3.12)

Since the first term on the right hand side of the above equation is O(φn) rather than O(ǫφn), it can balance the left
hand side of that equation. This issue will be made more clear in the calculations below. In order for the denominator
in the integral of Eq. (3.12) not to vanish in the Brillouin zone, we must require that

σ = −sgn(γ1) = −sgn(γ2). (3.13)

This simply means that the DM eigenvalue µ must lie inside the band gap as expected.
Now we substitute expressions (3.9) and (3.11) into Eq. (3.12), and can easily find that

φn(k1, k2) =
ǫσ

(2π)2

∫∫

φn(k̂1, k̂2)

h2 + |γ1|k̂2
1 + |γ2||k̂2

2

Wn,n(k1, k2, k̂1, k̂2)dk̂1dk̂2 +O(ǫφn). (3.14)

The above equation can be further simplified, up to error O(ǫφn), as

φn(k1, k2) =
ǫσ

(2π)2
φn(0, 0)Wn,n(k1, k2, 0, 0)

∫∫

1

h2 + |γ1|k̂2
1 + |γ2||k̂2

2

dk̂1dk̂2 +O(ǫφn). (3.15)

To calculate the integral in the above equation, we introduce variable scalings: k̃1 =
√

|γ1| k̂1, k̃2 =
√

|γ2| k̂2. Then
Eq. (3.15) becomes

φn(k1, k2) =
ǫσ

(2π)2
√
γ1γ2

φn(0, 0)Wn,n(k1, k2, 0, 0)

∫∫

1

h2 + k̃2
1 + k̃2

2

dk̃1dk̃2 +O(ǫφn), (3.16)

where the integration is over the scaled Brillouin zone with |k̃1| ≤ π
√

|γ1|/T1 and |k̃2| ≤ π
√

|γ2|/T2. This integration

region can be replaced by a disk of radius
√

1 − h2 in the (k̃1, k̃2) plane, which causes error of O(ǫφn) to Eq. (3.16).

Over this disk of radius
√

1 − h2, the integral in Eq. (3.16) can be easily calculated using polar coordinates to be
−2π lnh, thus Eq. (3.16) becomes

φn(k1, k2) = − ǫσ lnh

2π
√
γ1γ2

φn(0, 0)Wn,n(k1, k2, 0, 0) +O(ǫφn). (3.17)

Lastly, we take k1 = k2 = 0 in the above equation. In order for it to be consistent, we must have

lnh = − 2πσ
√
γ1γ2

ǫWn,n(0, 0, 0, 0)
+O(1). (3.18)

When this equation is substituted into (3.11), we finally get a formula for the DM eigenvalue µ as

µ = µc + σCe−β/ǫ, (3.19)

where σ is given by Eq. (3.13),

β =
4πσ

√
γ1γ2

Wn,n(0, 0, 0, 0)
, (3.20)

and C is some positive constant. Obviously β and ǫ must have the same sign, thus ǫ and σWn,n(0, 0, 0, 0) must
have the same sign. Since we have shown that σ and γ1, γ2 have opposite signs, we conclude that the condition for
defect-mode bifurcations from a Γ-symmetry edge point is that

sgn [ǫWn,n(0, 0, 0, 0)] = −sgn(γ1) = −sgn(γ2). (3.21)
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Under this condition, the DM eigenvalue µ bifurcated from the edge point µc is given by formula (3.19). Its distance
from the edge point, i.e. µ− µc, is exponentially small with the defect strength |ǫ|. This contrasts the 1D case where
such dependence is quadratic [10]. The constant C in formula (3.19) is much more difficult to calculate analytically,
thus will not be pursued here.

If the edge point of DM bifurcations is not at a Γ symmetry point, the DM bifurcation condition (3.21) and the
DM eigenvalue formula (3.19) still hold, except that γ1, γ2 and Wn,n in these formulas should now be evaluated at
the underlying edge point in the Brillouin zone.

Now we apply the above general results to the special system (2.2)-(2.5) we were considering in Sec. 2. When
ǫ≪ 1, this system can be written as

uxx + uyy + [µ+ V (x, y)]u = ǫf(x, y)u+O(ǫ2), (3.22)

where V (x, y) is given in Eq. (2.8), and

f(x, y) = −E0I0 cos2(x) cos2(y)FD(x, y)

[1 + I0 cos2(x) cos2(y)]2
. (3.23)

In this case, W (0, 0, 0, 0) is always negative, thus DM bifurcation condition (3.21) reduces to

sgn(ǫ) = sgn(γ1) = sgn(γ2). (3.24)

Thus, in an attractive defect, DMs bifurcate out from normal-diffraction band edges (i.e. lower edges) of Figure 1(a)
where the diffraction coefficients are positive; in a repulsive defect, DMs bifurcate out from anomalous-diffraction
band edges (i.e. upper edges) of Figure 1(a) where the diffraction coefficients are negative. This analytical result is
in agreement with the heuristic argument in the end of Section 2.

It should be mentioned that at some band edges, two linearly independent Bloch modes exist. Due to the symmetry
of the lattice in Eq. (2.2), these two Bloch modes are related as B(x, y) and B(y, x), where B(x, y) 6= B(y, x). Under
weak defects (2.3), two different DMs of forms u(x, y) and u(y, x) but with identical eigenvalues µ will bifurcate out
from these two Bloch modes of edge points respectively. This can be plainly seen from the above analysis. Since these
DMs have the same propagation constant, their linear superposition remains a defect mode due to the linear nature
of Eq. (2.5). Such superpositions can create more interesting DM patterns. This issue will be explored in more detail
in the next subsection.

B. Numerical results of defect modes in localized defects of various depths

The analytical results of the previous subsection hold under weak localized defects. If the defect becomes strong (i.e.
|ǫ| not small), the DM formula (3.19) will be invalid. In this subsection, we determine DMs in Eq. (2.5) numerically
for both weak and strong localized defects, and present various types of DM solutions. In addition, in the case of weak
defects, we will compare numerical results with analytical ones in the previous subsection, and show that they fully
agree with each other. The numerical method we will use is a power-conserving squared-operator method developed
in [30].

In these numerical computations, we fix E0 = 15, I0 = 6, and vary the defect strength parameter ǫ from −1 to 1.
We found a number of DM branches which are plotted in Figure 2 (solid lines). First, we look at these numerical
results under weak defects (|ǫ| ≪ 1). In this case, we see that DMs bifurcate out from edges of every Bloch band.
When the defect is attractive (ǫ > 0), the bifurcation occurs at the left edge of each Bloch band, while when the
defect is repulsive (ǫ < 0), the bifurcation occurs at the right edge of each Bloch band. Recall that the left and
right edges of Bloch bands in Figure 2 correspond to the lower and upper edges of Bloch bands in Figure 1(a) (where
diffractions are normal and anomalous respectively), thus these DM bifurcation results qualitatively agree with the
theoretical analysis in the previous subsection. We can further make quantitative comparisons between numerical
values of µ and the theoretical formula (3.19). This will be done in two different ways. One way is that we have
carefully examined the numerical µ values for |ǫ| ≪ 1, and found that they are indeed well described by functions of
the form (3.19). Data fitting of numerical values of µ into the form (3.19) gives β values which are very close to the
theoretical values of (3.20). For instance, for the DM branch in the semi-infinite bandgap in Figure 2, numerical data
fitting for 0 < ǫ ≪ 1 gives βnum = 0.1289 (Cnum = 0.4870). The theoretical β value, obtained from Eqs. (3.20) and
(3.23), is βanal = 0.1297, which agrees with βnum very well. Another way of quantitative comparison we have done
is to plot the theoretical formula (3.19) alongside the numerical curves in Figure 2. To do so, we first calculate the
theoretical value β from Eq. (3.20) at each band edge. Regarding the constant C in the µ formula (3.19), we do not
have a theoretical expression for it. To get around this problem, we fit this single constant from the numerical values
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FIG. 2: Bifurcations of defect modes with the defect described by Eq. (2.2) at E0 = 15 and I0 = 6. Solid lines: numerical
results; dashed lines: analytical results. The shaded regions are the Bloch bands. Profiles of DMs at the circled points in this
figure are displayed in Figs. 3 and 4.

of µ. The theoretical formulas thus obtained at every Bloch-band edge are plotted in Figure 2 as dashed lines. Good
quantitative agreement between numerical and analytical values can be seen as well.

As |ǫ| increases, DM branches move away from band edges (toward the left when ǫ > 0 and toward the right when
ǫ < 0). Notice that in attractive defects (ǫ > 0), these branches stay inside their respective bandgaps. But in repulsive
defects (ǫ < 0), DM branches march to edges of higher Bloch bands and then re-appear in higher bandgaps. For
instance, the DM branch in the first bandgap reaches the edge of the second Bloch band at ǫ ≈ −0.70 and re-appears
in the second bandgap when ǫ ≈ −0.76. These behaviors resemble those in the 1D case (see Fig. 4 in [10]). One
difference between the 1D and 2D cases seems to be, in 1D repulsive defects, when DM branches approach edges of
higher Bloch bands, the curves become tangential to the vertical band-edge line. This indicates that these 1D defect
modes can not enter Bloch bands as embedded eigenvalues inside the continuous spectrum. This fact is consistent
with the statement “(discrete) eigenvalues cannot lie in the continuous spectrum” in [32] for locally perturbed periodic
potentials in 1D linear Schrödinger equations. In the present 2D repulsive defects, on the other hand, the curves seem
to intersect the vertical band-edge lines non-tangentially. This may lead one to suspect that these DM branches might
enter Bloch bands and become embedded discrete eigenvalues. This suspicion appears to be wrong however for two
reasons. First, the mathematical work by Kuchment and Vainberg [33] shows that for separable periodic potentials
perturbed by localized defects, embedded DMs can not exist. In our theoretical model (2.5), the periodic potential is
non-separable, thus their result does not directly apply. But their result strongly suggests that embedded DMs can
not exist either in our case. Second, our preliminary numerical computations support this non-existence of embedded
DMs. We find numerically that when a DM branch enters Bloch bands in Figure 2, the DM mode starts to develop
oscillatory tails in the far field and becomes non-localized (thus not being a DM anymore).

Now we examine profiles of defect modes on DM branches in Figure 2. For this purpose, we select one representative
point from each DM branch, mark them by circles, and label them by letters in Figure 2. DM profiles at these marked
points are displayed in Figs. 3 and 4. The letter labels for these defect modes are identical to those for the marked
points on DM branches in Figure 2. First, we look at Figure 3, which shows DM profiles in repulsive defects (ǫ < 0).
We see that DMs at points ‘a, b’ of Figure 2 are symmetric in both x and y, with a dominant hump at the defect
site, and satisfy the relation u(x, y) = u(y, x). These DMs are the simplest in their respective bandgaps, thus we
will call them fundamental DMs. Notice that these fundamental DMs are sign-indefinite, i.e. they have nodes where
the intensities are zero, because they do not lie in the semi-infinite bandgap. Although DMs in Figure 3(a, b) look
similar, differences between them (mainly in their tail oscillations) do exist due to their residing in different bandgaps.
These differences are qualitatively similar to the 1D case, which has been carefully examined before (see Fig. 8 (b,
d) in [10] and Fig. 4 (b, d) in [8]). The DM branch of point ‘c’ is more interesting. At each point on this branch,
there are two linearly independent DMs, the reason being that this DM branch bifurcates from the right edge of the
second Bloch band where two linearly independent Bloch modes exist (this band edge is a X symmetry point, see Fig.
1). These two DMs are shown in Figure 3(c, d). One of them is symmetric in x and anti-symmetric in y, while the
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FIG. 3: Profiles of defect modes in repulsive defects in Figure 2. (a)-(c): DMs at the circled points ‘a, b, c’ in Figure 2, with
(ǫ, µ)=(−0.6, 8.33), (−0.8, 10.73), and (−0.6, 12.31), respectively; (d) the coexisting DM of mode (c); (e) and (f): intensity and
phase of the vortex mode obtained by superimposing modes (c) and (d) with π/2 phase delay, i.e. in the form of u(x, y)+iu(y, x);
(g) and (h): intensity and phase of the diagonally-oriented dipole mode obtained by superimposing modes (c) and (d) with no
phase delay, i.e. in the form of u(x, y) + u(y, x).
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FIG. 4: Profiles of defect modes in attractive defects in Figure 2. (i)-(l): DMs at the circled points ‘i, j, k, l’ in Figure 2, with
(ǫ, µ)=(0.8, 4.39), (0.8, 8.12), (0.8, 11.96), and (0.8, 12.57), respectively. (m) and (n): DMs obtained by superimposing mode
(l) and its coexisting mode with zero and π phase delays, i.e. in the form of u(x, y) + u(y, x) and u(x, y)− u(y, x) respectively.

other is opposite. They are related as u(x, y) and u(y, x) with u(x, y) 6= u(y, x). These DMs are dipole-like. However,
these dipoles are largely confined inside the defect site. They are closely related to certain single-Bloch-mode solitons
reported in [22].

Since the DM branch of point ‘c’ admits two linearly independent defect modes, their arbitrary linear superposition
would remain a defect mode since Eq. (2.5) is linear. Such linear superpositions could lead to new interesting DM
structures. For instance, if the two DMs in Figure 3(c, d) are superimposed with π/2 phase delay, i.e. in the form of
u(x, y) + iu(y, x), we get a vortex-type DM whose intensity and phase structures are shown in Figure 3(e, f). This
vortex DM is strongly confined in the defect site and looks like a familiar vortex-ring. It is qualitatively similar to
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vortex-cell solitons in periodic lattices under defocusing nonlinearity as reported in [22], as well as linear vortex arrays
in defected lattices as observed in [7]. However, it is quite different from the gap vortex solitons as observed in [20],
where the vortex beam itself creates an attractive defect with focusing nonlinearity, while the vortex DM here is
supported by a repulsive defect. If the two DMs in Figure 3(c, d) are directly superimposed without phase delays,
i.e. in the form of u(x, y) + u(y, x), we get a dipole-type DM whose intensity and phase profiles are shown in Figure
3(g, h). This dipole DM is largely confined in the defect site and resembles the DM of Figure 3(c, d), except that its
orientation is along the diagonal direction instead. This dipole DM is qualitatively similar to dipole-cell solitons in
uniform lattices under defocusing nonlinearity as reported in [22]. If the two DMs in Figure 3(c, d) are superimposed
with π phase delay, i.e. in the form of u(x, y) − u(y, x), the resulting DM would also be dipole-like but aligned
along the other diagonal axis. Such a DM is structurally the same as the one shown in Figure 3(g, h) in view of the
symmetries of our defected lattice.

Now we examine DMs in attractive defects, which are shown in Figure 4. At point ‘i’ in the semi-infinite bandgap,
the DM is bell-shaped and is strongly confined inside the defect site [see Figure 4(i)]. This mode is guided by the total
internal reflection mechanism, which is different from the repeated Bragg reflection mechanism for DMs in higher
bandgaps. On the DM branch of point ‘j’, there are two linearly independent DMs which are related as u(x, y) and
u(y, x). One of them is shown in Figure 4(j). This mode is dipole-like and resembles the one in Figure 3(c). Linear
superpositions of this mode u(x, y) with its coexisting mode u(y, x) would generate vortex- and dipole-like DMs similar
to those in Figure 3(e, f, g, h). In particular, the vortex DM at this point ‘j’ would be qualitatively similar to the
gap vortex soliton as observed in [20]. On the DM branch of point ‘k’, a single DM exists. This is because the left
edge of the third Bloch band where this branch of DM bifurcates from is located at the M symmetry point of the
Brillouin zone (see Fig. 1) and admits only a single Bloch mode. The DM at point ‘k’ is displayed in Figure 4(k).
This mode is largely confined at the defect site and is quadrupole-like. On the DM branch of point ‘l’, two linearly
independent DMs exist which are related as u(x, y) and u(y, x). One of them is shown in Figure 4(l). This mode is
symmetric in both x and y directions and is tripolar-like (with three dominant humps). Unlike DMs at points ‘c, j’,
this DM, superimposed with its coexisting mode with π/2 phase delay would not generate vortex modes, since this
DM has non-zero intensity at the center of the defect. However, their superpositions with zero and π phase delays,
i.e. in the forms of u(x, y) + u(y, x) and u(x, y)− u(y, x) would lead to two structurally different defect modes, which
are shown in Figure 4(m, n). The DM in Figure 4(m) has a dominant hump in the center of the defect, surrounded
by a negative ring, and with weaker satellite humps further out. The DM in Figure 4(n) is quadrupole-like, but
oriented differently from the quadrupole-like DM in Figure 4(k). These DMs resemble the spike-array solitons and
quadrupole-array solitons in uniform lattices under focusing nonlinearity as reported in [22].

Most of the DM branches in Figure 2 bifurcate from edges of Bloch bands. Even the branch of point ‘b’ in the
second bandgap of Figure 2 can be traced to the DM bifurcation from the right edge of the first Bloch band. But
there are exceptions. One example is the DM branch of point ‘l’ in the upper right corner of the second bandgap in
Figure 2 (we will call it the ‘l’ branch below). This ‘l’ branch does not bifurcate from any Bloch-band edge. Careful
examinations show that DMs on this branch closely resemble Bloch modes at the lowest Γ-symmetry point in the
third Bloch band (see Figure 1). Thus this ‘l’ branch should be considered as bifurcating from that lowest Γ-symmetry
point when ǫ≪ 1. However, we see from Figure 1 that this lowest Γ-symmetry point is not an edge point of the third
Bloch band. Even though it is a local edge (minimum) point of diffraction surfaces in the Brillouin zone, it still lies
inside the third Bloch band. Let us call this type of points “quasi-edge points” of Bloch bands. Then the ‘l’ branch of
DMs bifurcates from a quasi-edge point, not a true edge point, of a Bloch band! To illustrate this fact, we connected
the ‘l’ branch to this quasi-edge Γ-symmetry point (at ǫ = 0) by dotted lines through a fitted function of the form
(3.19) in Figure 2. This dotted line lies inside the third Bloch band. One question we can ask here is: what is the
nature of this dotted line? Since it is inside the Bloch band, the mathematical results by Kuchment and Vainberg
[33] suggest that it can not be a branch of embedded DMs. On the other hand, the ‘l’ DM branch in the second
bandgap does bifurcate out along this route. Then how does the ‘l’ branch bifurcate from the quasi-edge point along
this route? This question awaits further investigation. We note by passing that the Γ and M points inside the second
Bloch band are also quasi-edge points (see Figure 1(a)). Additional DM branches may bifurcate from such quasi-edge
points as well.

IV. DEPENDENCE OF DEFECT MODES ON THE APPLIED DC FIELD E0

In the previous section, we investigated the bifurcation of DMs as the local-defect strength parameter ǫ varies. In
experiments on photorefractive crystals, the applied dc field E0 can be adjusted in a wide range much more easily
than the defect strength. So in this section, we investigate how DMs are affected by the value of E0 in Eqs. (2.1)-(2.2)
under localized defects of (2.3). When E0 changes, so does the lattice potential. We consider both attractive and
repulsive defects at fixed values of ǫ = ±0.9 (the reason for these choices of ǫ values will be given below). For other
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FIG. 5: (a) Profile of the lattice IL(x, y) in Eq. (2.2) with a repulsive localized defect of (2.3) and ǫ = −0.9 (I0 = 6). (b) The
corresponding DM branches in the (µ, E0) parameter space. Shaded: Bloch bands. DMs at the circled points are displayed in
Figure 6.

fixed ǫ values, the dependence of DMs on E0 is expected to be qualitatively the same. The reader is reminded that
throughout this section, the I0 value is fixed at I0 = 6.

A. The case of repulsive defects

In 2D photonic lattices with single-site repulsive defects we experimentally created in [7], ǫ ≈ −1. At this value of
ǫ, however, we found that DMs may exist in high bandgaps, but not in low bandgaps (see Figure 2 where E0 = 15).
Thus for presentational purposes, we take ǫ = −0.9 in our computations below. The corresponding lattice profile of
IL(x, y) is shown in Figure 5(a), which still closely resembles the defects in our previous experiments [7].

For this defect, we found different types of defect modes at various values of E0. The results are summarized in
Figs. 5(b) and 6. In Figure 5(b), the dependence of DM eigenvalues µ on the dc field E0 is displayed. As can be seen,
when E0 increases from zero, a DM branch appears in the second bandgap at E0 ≈ 8.5. When E0 increases further,
this branch moves toward the third Bloch band and disappears at E0 ≈ 15. But when E0 increases to E0 ≈ 23.4,
another DM branch appears in the third bandgap. This branch moves toward the fourth Bloch band and disappears
at E0 ≈ 36.7. In the fourth gap, there are two DM branches. The upper branch exists when 45.9 < E0 < 64.2, and the
lower branch exists when 31.6 < E0 < 40.8. As E0 increases even further, DM branches will continue to migrate from
lower bandgaps to higher ones. These behaviors are qualitatively similar to the 1D case (see Fig. 7 in [10]). Some
examples of DMs marked by circles in Figure 5 are displayed in Figure 6. We can see that DMs at points ‘a, b, c’ are
“fundamental” DMs. At point ‘d’, there are two linearly independent DMs related by u(x, y) and u(y, x), one of which
is displayed in Figure 6(d). These DMs are dipole-like, similar to the ‘c’ branch in Figure 2. Linear superpositions
of these DMs with π/2 and 0 phase delays would generate a vortex DM and a diagonally-oriented dipole DM, whose
amplitude profiles are shown in Figure 6 (e) and (f) (their phase fields are similar to those in Figure 3(f, h) and thus
not shown here).

B. The case of attractive defects

For attractive defects, we choose ǫ = 0.9 following the above choice of ǫ = −0.9 for repulsive defects. The lattice
profile at this ǫ value is shown in Figure 7(a). The dependence of DM eigenvalues µ on the dc field E0 is shown
in Figure 7(b). Unlike DMs in repulsive defects, DMs in this attractive defect exist in all bandgaps (including the
semi-infinite and first bandgaps). In addition, DM branches here stay in their respective bandgaps as E0 increases,
contrasting the repulsive case. DM profiles at marked points in Figure 7(b) are displayed in Figure 8. The DM in
Figure 8(a) is bell-shaped and all positive, and it is the fundamental DM in the semi-infinite bandgap. This DM is
similar to the one on the ‘i’ branch of Figure 2, and is guided by the total internal reflection mechanism. The DM in
the first bandgap is dipole-like and is displayed in Figure 8(b). This DM branch is similar to the ‘j’ branch of Figure
2. On this branch, there is another coexisting DM which is a 90◦-rotation of Figure 8(b). Linear superpositions
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of these two DMs could generate vortex-like and diagonally-oriented dipole-like DMs, as Figure 3(e, f, g, h) shows.
In the second bandgap, there are two DM branches: the ‘c’ branch and the ‘d’ branch. DMs on the ‘c’ branch are
quadrupole-like, and this branch is similar to the ‘k’ branch of Figure 2. On this branch, there is a single linearly
independent defect mode. The ‘d’ branch is similar to the ‘l’ branch of Figure 2. On this branch, there are two
linearly independent DMs which are tripolar-like and orthogonal to each other [see Figure 4(l)]. A superposition of
these DMs with zero phase delay creates a hump-ring-type structure which is shown in Figure 8(d) [see also Figure
4(m)]. A different superposition would produce a quadrupole-type structure as the one shown in Figure 4(n). In the
third and fourth bandgaps, there are additional DM branches. These branches exist at E0 values higher than 15, thus
have no counterparts in Figure 2 (where E0 = 15). Profiles of these DMs are more exotic as can be seen in Figure 8
(e) and (f).
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FIG. 8: Defect modes supported by attractive localized defects of Figure 7(a) at the circled points ‘a, b, c, d, e, f’ of Figure
7(b), with (E0, µ)=(15, 4.29), (15, 8.00), (15, 11.84), (15, 12.48), (30, 24.23) and (42, 36.69), respectively.

V. DEFECT MODES IN NON-LOCALIZED DEFECTS

In previous sections, we exclusively dealt with defect modes in 2D-localized defects. We found that DM eigenvalues
bifurcate out from Bloch-band edges exponentially with the defect strength ǫ [see Eq. (3.19)]. In addition, DMs can
not be embedded inside Bloch bands (i.e. the continuous spectrum). In this section, we briefly discuss DMs in non-
localized defects, and point out two significant differences between DMs in localized and non-localized defects. One is
that in non-localized defects, DM eigenvalues can bifurcate out from edges of the continuous spectrum algebraically,
not exponentially, with the defect strength ǫ. The other one is that in non-localized defects, DMs can be embedded
inside the continuous spectrum as embedded eigenmodes.

For simplicity, we consider the following linear Schrödinger equation with separable non-localized defects,

uxx + uyy + {VD(x) + VD(y)} u = −µu, (5.1)

where function VD is a one-dimensional defected periodic potential of the form

VD(x) = − E0

1 + I0 cos2(x) {1 + ǫFD(x)} , (5.2)

FD(x) = exp(−x8/128) is a defect function as has been used before [10], and ǫ is the defect strength. We chose this
separable defect in Eq. (5.1) because all its eigenmodes (both discrete and continuous) can be obtained analytically
(see below). The non-localized nature of this separable defect can be visually seen in Figure 9(a), where the defected
potential VD(x) + VD(y) for I0 = 3, E0 = 6, and ǫ = −0.7 is displayed. Note that this potential plotted here differs
from the usual concept of quantum-mechanics potentials by a sign, and it resembles the refractive-index function in
optics. We see that along the x and y axes in Figure 9(a), the defect extends to infinity (thus non-localized). The
above I0 and E0 parameters were chosen because they have been used before in the 1D defect-mode analysis of [10],
and such 1D results will be used to construct the eigenmodes of the 2D defect equation (5.1) below.

Since the potential in Eq. (5.1) is separable, the eigenmodes of this equation can be split into the following form:

u(x, y) = ua(x)ub(y), µ = µa + µb, (5.3)

where ua, ub, µa, µb satisfy the following one-dimensional eigenvalue equation:

ua,xx + VD(x)ua = −µaua, (5.4)

ub,yy + VD(y)ub = −µbub. (5.5)
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These two 1D equations for ua and ub are identical to the 1D defect equation we studied comprehensively in [10].
Using the splitting (5.3) and the 1D results in [10], we can construct the entire discrete and continuous spectra of Eq.
(5.1).

Before we construct the spectra of Eq. (5.1), we need to clarify the definitions of discrete and continuous eigenvalues
of this 2D equation. Here an eigenvalue is called discrete if its eigenfunction is square-integrable (thus localized along
all directions in the (x, y) plane). Otherwise it is called continuous. Note that an eigenfunction which is localized
along one direction (say x axis) but non-localized along another direction (say y axis) corresponds to a continuous,
not discrete, eigenvalue.

Now we construct the spectra of Eq. (5.1) for a specific example with E0 = 6, I0 = 3 and ǫ = 0.8. At these
parameter values, the discrete eigenvalues and continuous-spectrum intervals (1D Bloch bands) of the 1D eigenvalue
problem (5.4) are (see [10])

{λ1, λ2, λ3, . . . } = {2.0847, 4.5002, 7.5951, . . . , }, (5.6)

{[I1, I2], [I3, I4], [I5, I6], . . . } = {[2.5781, 2.9493], [4.7553, 6.6010], [7.6250, 11.8775], . . .}. (5.7)

Using the relation (5.3), we find that the discrete eigenvalues and continuous-spectrum intervals of the 2D eigenvalue
problem (5.1) are

{µ1, µ2, µ3, µ4, . . . } = {2λ1, λ1 + λ2, 2λ2, λ1 + λ3, . . . } = {4.1694, 6.5849, 9.0004, 9.6798, . . . , }, (5.8)

and

{µcontinuum} = {[λ1 + I1, 2I2], [λ1 + I3, ∞)} = {[4.6628, 5.8986], [6.8400, ∞)}. (5.9)

Note that at the left edges of the two continuous-spectrum bands (µ = 4.6628 and 6.8400), the eigenfunctions are
non-localized along one direction but localized along its orthogonal direction, thus they are not the usual 2D Bloch
modes (which would have been non-localized along all directions). This is why for Eq. (5.1), we do not call these
continuous-spectrum bands as Bloch bands.

Repeating the same calculations to other ǫ values, we have constructed the whole spectra of Eq. (5.1) in the (µ, ǫ)
plane for I0 = 3 and E0 = 6. The results are displayed in Figure 9(b). Here solid curves show branches of DMs
(discrete eigenvalues), and shaded regions are the continuous spectrum. This figure shows two significant features
which are distinctively different from those in localized defects. One is that several DM branches (such as the ‘c’ and
‘d’ branches) are either partially or completely embedded inside the continuous spectrum. This means that in non-
localized defects, embedded DMs inside the continuous spectrum do exist. This contrasts the localized-defect case,
where the mathematical results of Kuchment and Vainberg [33] and our numerics show non-existence of embedded
DMs. Another feature of Figure 9(b) is on the quantitative behavior of DM bifurcations from edges of the continuous
spectrum at small values of the defect strength ǫ. We have shown before that in the 1D case, DMs bifurcate out from
Bloch-band edges quadratically with ǫ [10]. For the 2D problem (5.1), using the relation (5.3), we can readily see that
when DMs bifurcate out from edges of the continuous spectrum (see the ‘a, b, d’ branches for instance), the distance
between DM eigenvalues and the continuum edges also depends on ǫ quadratically. This contrasts the localized-defect
case, where we have shown in section III that DMs bifurcate out from Bloch-band edges exponentially.

Even though the defect in Eq. (5.1) is non-localized rather than localized, the DMs it admits actually are quite
similar to those in localized defects. To demonstrate, we picked four representative points on the DM branches of
Figure 9(b). These points are marked by circles and labeled by letters ‘a, b, c, d’ respectively. Profiles of DMs at
these four points are displayed in Figure 10. Comparing these DMs with those of localized defects in Figs. 3 and 4,
we easily see that they are quite similar. In particular, the ‘a, b, c, d’ branches in Figure 9(b) resemble the ‘i, j, k, a’
branches in Figure 2, as DMs on the corresponding branches are much alike. Notice that DMs in the non-localized
defect case are a little more spread out than their counterparts in the local-defect case (compare Figs. 4(k) and 10(c),
for instance). This is simply because in the non-localized defect, we chose E0 = 6, while in the localized defect,
we chose a much higher value of E0 = 15. Higher E0 values induce deeper potential variations, which facilitates
better confinement of DMs. We need to point out that, even though the DMs at points ‘c, d’ are embedded inside
the continuous spectrum, their eigenfunctions are perfectly 2D-localized and square-integrable (see Figure 10(d) in
particular). Thus, the embedded nature of a defect mode does not necessarily cause it to spread out more.

VI. SUMMARY

In summary, we have thoroughly investigated defect modes in two-dimensional photonic lattices with localized or
non-localized defects. When the defect is localized and weak, we analytically determined defect-mode eigenvalues
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FIG. 9: (a) Profile of a 2D potential with non-localized defects VD(x) + VD(y) in Eqs. (5.1)-(5.2) with E0 = 6, I0 = 3, and
ǫ = −0.7. (b) DM branches supported by this non-localized defect in the (µ, ǫ) parameter space. Shaded: the continuous
spectrum. DMs at the circled points are displayed in Figure 10.
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FIG. 10: Defect modes in non-localized defects (5.1)-(5.2) at the circled points ‘a, b, c, d’ in Figure 9(b), with (ǫ, µ)=(0.8,
4.17), (0.8,6.59), (0.8, 9.00), and (−0.7, 8.61) respectively.

bifurcated from edges of Bloch bands. We found that in an attractive (repulsive) defect, defect modes bifurcate out
from Bloch-band edges with normal (anomalous) diffraction coefficients. Furthermore, distances between defect-mode
eigenvalues and Bloch-band edges are exponentially small functions of the defect strength, which is qualitatively
different from the 1D case. Another interesting phenomenon we found was that, some defect-mode branches bifurcate
not from Bloch-band edges, but from quasi-edge points within Bloch bands. When the defect is localized but strong,
defect modes were studied numerically. It was found that both the repulsive and attractive defects can guide various
types of defect modes such as fundamental, dipole, tripolar, quadrupole, and vortex modes. These modes reside in
various bandgaps of the photonic lattice. As the defect strength increases, defect modes move from lower bandgaps
to higher ones when the defect is repulsive, but remain within each bandgap when the defect is attractive. The
same phenomena are observed when the defect is held fixed while the applied dc field increases. If the defect is non-
localized (i.e. the defect does not disappear at infinity in the lattice), we showed that DMs exhibit two new features:
(i) DMs can be embedded inside the continuous spectrum; (ii) DMs can bifurcate out from edges of the continuous
spectrum algebraically rather than exponentially. These theoretical results pave the way for further experimental
demonstrations of various type of DMs in a 2D lattice.
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