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Topological properties of lattices are typically revealed in momentum space using concepts such as the
Chern number. Here, we study unconventional loop states, namely, the noncontractible loop states (NLSs)
and robust boundary modes, mediated by nontrivial topology in real space. While such states play a key
role in understanding fundamental physics of flatband systems, their experimental observation has been
hampered because of the challenge in realizing desired boundary conditions. Using a laser-writing
technique, we optically establish photonic kagome lattices with both an open boundary by properly
truncating the lattice, and a periodic boundary by shaping the lattice into a Corbino geometry. We thereby
demonstrate the robust boundary modes winding around the entire edge of the open lattice and, more
directly, the NLSs winding in a closed loop akin to that in a torus. We prove that the NLSs due to real-space
topology persist in ideal Corbino-shaped kagome lattices of arbitrary size. Our results could be of great
importance for our understanding of the singular flatbands and the intriguing physics phenomenon
applicable for strongly interacting systems.
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A flatband (FB) is a dispersion-free energy band where
the group velocity vanishes at all momenta in the Brillouin
zone and thus electrons are considered immobile or
localized. FB systems have attracted considerable interest
in many different branches of physics in past decades,
partly because interaction effects in such systems are
maximized by the zero kinetic energy. Much progress
has been made in understanding fundamental phenomena
associated with FB lattices, including Anderson localiza-
tion, bosonic condensation, parity-time symmetry, frac-
tional quantum Hall states, superconducting transitions,
and superfluidity in topological FBs [1–11]. Indeed,
engineered FB structures have now been realized in a
variety of physical systems [12], ranging from photonic
waveguide arrays [13–22] to synthetic atomic lattices
[23,24], and from metamaterials [25] to cavity polaritons
[26]. Recently, FB structures have also been experimentally
accomplished in realistic materials forming electronic Lieb
and kagome lattices [27,28].
The localized nature of the FB states is clearly charac-

terized by the existence of the so-called compact localized
states (CLSs), which are the exact FB eigenstates with
nonzero amplitudes only in a few lattice sites inside a finite

region, as demonstrated already in several photonic experi-
ments [14–19]. An example with the kagome lattice (KL)
is illustrated in Fig. 1(a), which has an FB touching a
dispersive band in momentum space [Fig. 1(b)]. As
discussed in condensed matter physics, although an elec-
tron can hop between lattice sites, these localized eigen-
states do not spread out due to destructive interference. A
linear combination of Bloch wave functions always exists
which results in the CLSs in the FB systems [12,29,30].
In principle, there should be N linearly independent CLSs
to span the whole FB, where N is the number of unit cells.
If the Bloch wave function has a discontinuity in momen-
tum space due to the singular band crossing, the maximum
number of linearly independent CLSs is always less thanN,
and the missing states are the so-called noncontractible
loop states (NLSs) that manifest the topological properties
in real space as discussed in Refs. [29,30].
One can understand this intuitively as follows: First, as

shown for the KL in Fig. 1(c), the NLSs extend unbound-
edly in an infinite lattice. With a torus geometry, equivalent
to imposing a periodic boundary condition (BC), an NLS
spans a closed loop across the torus along either toroidal or
poloidal direction [see Fig. 1(d)] that defines the winding.
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Second, the NLSs are robust against the addition of any
CLS or local perturbation, because it cannot break an NLS
but only warps its loop, and the resulting NLS is again an
eigenstate. Third, in a finite system with open BCs, the
NLSs are revealed by the robust boundary modes (RBMs),
which span a closed contour along the boundary of the
entire finite system. These RBMs can be considered as a
direct consequence of cutting and folding the 3D torus into
a 2D plane, manifesting the NLSs[30]. Both the NLSs
and the RBMs characterize the Bloch wave function
discontinuity of the singular FB, establishing the novel
bulk-boundary correspondence. When they are present, the
topological structure protects the band touching in a sense
that they can only be removed by strong perturbations that
also destroy the flatness of the energy band. Because of the
localized characteristic and nontrivial winding of these FB
states, the topological protection lies in real space rather
than in momentum space [29,30].
Although these results have been predicated theoreti-

cally, direct observation of the NLSs has been a challenge
because they are stable only under the periodic BC or on the
torus geometry of the lattice model, while in real-world
experiments the lattices are usually finite with open
boundaries. In a recent effort to achieve this goal, line
states were realized in a finite Lieb lattice with specially
designed boundaries [22]. The line states look quite similar
to the NLSs, but they can represent only an indirect and
incomplete demonstration of the NLSs because the stability
of those line states greatly depends on a specific boundary
shape. Naively, we would expect the NLSs should also be
observed in the widely studied KLs [31–37]. However, in a
finite KL, it is even impossible to stabilize any line states

with just a simple edge termination due to the distinctive
topological structure. In fact, the NLSs originally proposed
with the theoretical KL model [29] have never been
realized, leading to the examination of underlying real-
space topology elusive.
In this Letter, we demonstrate an annular (Corbino-

disk-shaped) photonic KL for direct observation of the
NLSs. Such a Corbino geometry is achieved by warping a
KL ribbon into a ring, defining a 2D system confined
between two concentric circles, as illustrated in Fig. 1(h).
(Similar geometry has recently been used for design of
graphene heterostructures and superconducting wave-
guides [38–40]). In the Corbino-shaped KL, the perio-
dicity is preserved in the azimuthal direction (i.e., the
corresponding toroidal direction for the torus geometry).
As such, we realize evidently the NLSs as a direct
observation of the nontrivial loop states winding along
a torus. Furthermore, using a finite-sized KL with open
boundaries, we also observe the RBMs and demonstrate
their robust propagation and “self-healing” features
against perturbation. Through rigorous analysis, we show
that the band touching and the NLSs exist in an ideal
Corbino-shaped KL of arbitrary size. Our results represent
the first realization of nontrivial loop states as direct
manifestation of the real-space topological features.
First, we show that a line state cannot be an FB eigenmode

in finite KLs regardless of the lattice edge termination, in
sharp contrast to the case of Lieb lattices [22]. As depicted
in Fig. 1(a), the KL has three lattice sites (A, B, and C) per
unit cell, and every lattice site has four nearest neighbors
in transverse x-y plane. To excite a particular FB state, a
modulated probe beam is sent to propagate through the

FIG. 1. (a) Schematic of a kagome lattice (KL), where the black dashed hexagon marks a unit cell with three sublattice sites labeled A,
B, and C and a set of lattice vectors denoted as αn (n ¼ 1, 2, 3), and the red dashed hexagon represents a simplest CLS. (b) Band
structure in the tight-binding approximation. (c) Illustration of two NLSs in an infinitely extended lattice. (d) A torus showing two NLSs
mimicking an infinite lattice. (e) A KL terminated with zigzag-armchair edges in left and right sides, where the colored dots illustrate a
line state. (f),(g) A lattice terminated with all flat-cutting edges, and orange (blue) loop illustrates the boundary mode RBM1 (RBM2).
(h) A Corbino-shaped KL, where the orange loop illustrates an NLS. In all figures, black sites are of zero amplitude, while blue and red
ones distinguish nonzero sites with opposite phase.
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lattice along the z direction. Light propagation under paraxial
approximation is describedbyaSchrödingerlike equation [12–
19]: ∂zψðx; y; zÞ ¼ ½ði=2k0n0Þ∇2⊥ þ ik0Δnðx; yÞ�ψðx; y; zÞ,
where ψðx; y; zÞ is the envelope of the electric field. The
induced refractive-index profile Δnðx; yÞ acts as an effective
potential for the light field. k0 is thewave number, andn0 is the
bulk refractive index. Under the tight-binding approximation,
one can use a discrete model to describe the coupling between
lattice sites. By Fourier transforming the tight-binding
Hamiltonian into k space, one can obtain

Hk ¼ 2t

0
B@

0 cos k1 cos k2
cos k1 0 cos k3
cos k2 cos k3 0

1
CA; ð1Þ

where t is the hopping amplitude (or coupling constant) for the
nearest-neighbor sites. The wave vectors are kn ¼ k · αn, and
αn is illustrated in Fig. 1(a). Then, we can obtain the
eigenvalues of Hk, as the energy spectrum with three bands:
EFB¼−2t;E�ðkx;kyÞ¼tf1�½4ðcos2k1þcos2k2þcos2k3Þ−
3�1=2g. The two dispersive bands (E�) intersect at two
inequivalent Dirac points like that of the honeycomb lattices
[41,42], and the second band touches the bottom FB (EFB) at
the center of the first Brillouin zone. In FB lattices, one can
always find a set of CLSs as degenerate eigenstates, whose
energy is the same no matter where they reside in the lattice.
A fundamental CLS (ring mode) [19,43] of the KL is
illustrated in Fig. 1(a), where the wave amplitude remains
nonzero only at the six lattice sites. Other kinds ofCLSs can be
constructed by linear superpositions [14,15,18,19]. However,
the CLSs cannot span the FB completely because there always
exists a vanishing linear combination [29]. Themissing states,
namely, the NLSs, manifest the topological structure of the
lattice in real space. Since a torus geometry is hard to fabricate
experimentally, a natural question is whether the line states
should exist in a truncated KL under appropriate open
boundaries (as for the Lieb lattice [22]). We show below this
is not the case due to the fundamental difference of the
topological structures of the lattices.
Let us consider the FB model in a photonic KL with open

boundaries. The lattice can be terminated into a finite
region with four different edges [see Supplemental Material
(SM) for details [44] ]. As a typical example, we consider
only one case here shown in Fig. 1(e), which has in both left
and right sides a zigzag-armchair edge. As illustrated in
Fig. 1(e), a line state occupies only B and C sublattices, and
it can be described by jψLSi ¼ c0ðjB1i − jC1i þ jB2i−
jC2i þ jB3i − jC3i þ jB4iÞ, where c0 is a normalization
constant. Applying the tight-binding Hamiltonian to this
line state, we have HkjψLSi¼ c0tð−jB1iþ2jC1i−2jB2iþ
2jC2i−2jB3iþ2jC3i− jB4iÞ, where we have considered
only nonvanishing terms, so hψLSjHkjψLSi does not equal
to a constant. From this simple calculation, one can see that
jψLSi is not an eigenmode of the KL because we obtain

different coefficients at two ending sites (B1 and B4)
compared with the bulk sites (C1, B2, C2, B3, and C3).
If the periodic BC is assumed, identifying B1 and B4, jψLSi
can become an eigenmode, which would require delicate
design of the boundary passivation as detailed in the SM,
Sec. S1 [44].
For the above reason, the line states cannot be stable in

the finite KLs, and thus cannot effectively unveil the
topological feature of the NLSs under an infinite or periodic
FB system. In what follows, we show two alternative ways
to observe the NLSs directly in a photonic platform. First,
we establish a finite KL with flat-edge termination,
equivalent to cutting a torus [Fig. 1(d)] in both toroidal
and poloidal directions along the noncontractible loops and
unfolding it into a 2D plane. We observe localized loop
states along its entire boundary illustrated in Figs. 1(f)
and 1(g) as the direct demonstration of the RBMs. Second,
we optically “fabricate” a Corbino geometry of the KL
discussed above [Fig. 1(h)] to directly observe the NLSs.
Our experiments are based on photonic lattices formed

by continuous-wave (cw) laser writing of waveguides using
the technique established already for the Lieb lattices [22],
essentially site-to-site optical induction in a bulk photo-
refractive nonlinear crystal (SBN, with dimensions
5 × 10 × 5 mm3). Although the mechanism is quite differ-
ent, the writing method used here is somewhat similar to
femtosecond laser-writing waveguides in glass [45,46].
A laser beam (λ ¼ 532 nm) is used to illuminate a spatial
light modulator (SLM), which controls the amplitude and
phase of the writing beam with reconfigurable input
positions. After the SLM, a 4F system is used to generate
a quasinondiffracting zone of the writing beam through the
biased crystal. All waveguides remain intact during the
writing process. To examine the induced lattice, we
illuminate a weak extraordinarily polarized quasi-plane
wave to probe the written waveguide array. At the back
facet of the crystal, we see that the otherwise uniform probe
beam becomes discretely guided into the lattice sites,
indicating the desired KL has been established [Fig. 2(a)].
With such a writing technique, photonic KLs with different
edge terminations are established, where we found that the
line states indeed cannot preserve in finite KLs (see SM [44]
for details).
Next, we present our results of the RBMs spanning the

whole boundary of the finite lattice, as observing the RBMs
is in a sense equivalent to observing the NLSs [30]. Typical
experimental and simulation results for the RBMs are
presented in Fig. 2. Figs. 2(a1) and 2(a2) show the KL
terminated with flat edges, and the lattice spacing is about
34 μm. The RBM1 corresponding to Fig. 1(f) can be
considered as a combination of four NLSs by cutting the
torus in two orthogonal directions [30]. To observe this
boundary mode, an input probe beam is shaped into a
parallelogram pattern with its phase modulated by the SLM
so that adjacent sites have opposite phase. When such a
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probe beam is launched into the lattice boundary, it preserves
its necklacelike pattern after passing through the lattice
[Fig. 2(b1)]. For comparison, the necklace deteriorates if
the neighboring sites are in phase [Fig. 2(b2)], as the energy
of the boundary mode couples into other sites out of the
loop. On the other hand, the RBM2 corresponding to
Fig. 1(g) can be regarded as a linear superposition of
RBM1 and a fundamental CLS shown in Fig. 1(a), so there
are two defect sites with respect to RBM1 but the loop
remains unbroken. Clearly, RBM2 can also be retained after
propagating through the lattice with the out-of-phase con-
dition [Figs. 2(c1) and 2(e1)], but not with the in-phase
condition [Figs. 2(c2) and 2(e2)] due to the nature of the FB
eigenstates.
To further show the stability of the RBMs, we inten-

tionally introduce perturbation to the otherwise uniform
loop state in both experiment [Fig. 2(d1)] and numerical
simulation [Fig. 2(d2)]. In the example shown for the
RBM1, a phase perturbation (about 25%) is added to one
“pearl” of the necklacelike mode. After propagating
through the lattice, the field at the defect site recovers
and the RBM1 restores, which can be seen more clearly
from the simulation to a longer propagation distance
through the lattice [Fig. 2(d2)]. In other words, the
RBM can maintain its shape even if there exists slight
energy leakage (because of the finite lattice size and limited
propagation distance). As such, the RBM exhibits a “self-
healing” feature [22]. From the previous study [30], we
know the boundary modes cannot be observed by directly
probing energy spectra (since the whole band is degener-
ate), so this stability against perturbation is the main
signature of the RBMs that we observe here in real space.
Finally, we present the results obtained with a Corbino-

shaped KL. As illustrated in Fig. 3(a), with this lattice
geometry, one can realize the NLS along the toroidal
direction, akin to an infinite system in one dimension.
For the Corbino geometry, the distances between B and C
sublattices are equivalent over each ring and increase with
the ring diameter (here we use B1C1 ¼ C1B2 ¼ 32 μm);

the distances between A and B (C) sublattices are also equal
but these distances within and outside the ring are not
dependent (here we use A1C1 ¼ A1B1 ¼ 41 μm and
A4C1 ¼ A4B2 ¼ 32 μm). We generate such a Corbino-
shaped KL with site-by-site laser writing in the nonlinear
crystal, and a typical experimentally established lattice is
shown in Fig. 3(b). Then, we launch a ring-shaped necklace
pattern under out-of-phase condition to excite the NLS
depicted in Fig. 3(a). Corresponding experimental results
are shown in Fig. 3(c1), where one can clearly see that the
necklace beam remains intact after 10 mm of propagation
through the lattice, as verified by numerical simulations
to even longer propagation [Figs. 3(c2) and 2(c3)]. For
comparison, if the input necklace beam does not have the
required alternating phase, it is strongly distorted during
propagation [Figs. 3(d1)–3(d3)] since such an input cannot
evolve into the NLS. The results in Fig. 3(c) represent a
direct demonstration of the NLS originally proposed for the
infinite system as the nontrivial FB eigenstate arising from
real-space topology [29].
Before closing, a few issues merit discussion. The first is

about the fundamental difference between the Corbino- and
torus-shaped KLs. Note that the torus geometry corre-
sponds to the usual infinite system with periodic BC
satisfied in two orthogonal directions, but in the Corbino
geometry it is satisfied along only one direction. To this
end, we analyzed the band structure of an ideal Corbino
disk of arbitrary size in the Supplemental Material [44].
We show that the FB of the Corbino geometry still supports
the band crossing corresponding to that in the torus
geometry. However, the counting argument for the number
of independent CLSs and NLSs arising from the band
crossing changes drastically. We show that there are N
[N ¼ 8 for the illustrated example in Fig. 1(h)] independent
CLSs and only one independent NLS in the Corbino
geometry, as opposed to the existence of N-1 CLSs and
two NLSs in the torus geometry. Thus, in the Corbino
geometry, the band crossing point intrinsically yields only
one topological NLS (see SM, Sec. II [44] for details).

FIG. 2. Realization of RBMs in a finite-sized KL with flat-cutting edges. (a1),(a2) The lattice from (a1) experiment and (a2)
simulation, where the shadow in (a1) and (a2) marks the input beam of RBM1 and RBM2, respectively. (b1),(b2) Experimental results of
RBM1 under (b1) out-of-phase and (b2) in-phase input conditions, corresponding to Fig. 1(f). (c1),(c2) Experimental results of RBM2,
corresponding to Fig. 1(g). (d1),(d2) Excitation of RBM1 with a defect site of imperfect input phase from (d1) experiment and (d2)
simulation to 20 cm propagation distance. (e1),(e2) Simulation results corresponding to (c1),(c2).
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The other issue is about the broader impact of our work
based on the KLs. Although kagome and Lieb lattices share
some similar properties, being singular FB with band
touching protected by discontinuities of their Bloch func-
tions, they do have a fundamental difference: the FB of a
Lieb lattice arises due to its bipartite lattice structure, occurs
in the middle of its energy spectrum, and gives rise to FB
ferrimagnetism when filled with interacting spins [47,48];
the FB of a kagome lattice is based on its line graph
structure, lies at an extremum of the single particle
spectrum, and hosts FB ferromagnetism [49]. Thus, our
finding that finite KLs cannot stabilize the line states but
rather the NLSs adds to new understanding of these
singular flatbands. On the other hand, in contrast to Lieb
lattices, which typically require atom-by-atom construction
[24,27], KLs have been readily grown at a large scale.
While a major motivation for studying KLs is their exotic
spin liquid states [50], recent experiments directly measure
the electronic band structure and image the bulk and edge
states in KLs [51,52]. Negative FB magnetism has also
been demonstrated with a correlated kagome magnet
representing a nontrivial flatband system [53]. In photonics,
higher-order topological insulators have been realized with
the KLs [54,55]. More broadly, the presence of flatbands
in various moiré superlattices is believed to be closely
connected to the emergence of novel strongly correlated
electronic states [56,57]. Thus, our work on topological
photonic KLs is of interdisciplinary interest.
In conclusion, we have demonstrated NLSs and RBMs,

which are unique topological entities available in the
singular FB systems, with a photonic KL platform. We
have directly probed the real-space topology of these
nontrivial loop states: First, the NLS is observed in the

judiciously designed KL of Corbino geometry, where the
periodic BC is realized along a closed loop winding around
the 2D Corbino disk, just as the NLS winding across a 3D
torus; Second, the robustness of the RBM is realized,
against the addition of any CLS or defect. Theoretically, we
have proved that the band touching is still topologically
protected in an ideal Corbino KL. Our direct observation
and rigorous analysis of the NLSs indicate that the KLs
have a band-crossing singularity in momentum space
arising from real-space topology. Our work in a convenient
photonic platform may lead to new understanding of some
intriguing fundamental phenomena relevant to strongly
interacting systems.
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R. T. Scalettar, Phys. Rev. B 90, 094506 (2014).

[7] L. Ge, Phys. Rev. A 92, 052103 (2015).
[8] M. I. Molina, Phys. Rev. A 92, 063813 (2015).
[9] S. Peotta and P. Törmä, Nat. Commun. 6, 8944 (2015).

[10] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin,
A. Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E.
Türeci, A. Amo, and J. Bloch, Phys. Rev. Lett. 116, 066402
(2016).

[11] A. Julku, S. Peotta, T. I. Vanhala, D. H. Kim, and P. Törmä,
Phys. Rev. Lett. 117, 045303 (2016).

[12] D. Leykam, A. Andreanov, and S. Flach, Adv. Phys. X 3,
1473052 (2018).

[13] D. Guzmán-Silva, C. Mejía-Cortés, M. A. Bandres, M. C.
Rechtsman, S. Weimann, S. Nolte, M. Segev, A. Szameit,
and R. A. Vicencio, New J. Phys. 16, 063061 (2014).

[14] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B.
Real, C. Mejia-Cortes, S. Weimann, A. Szameit, and M. I.
Molina, Phys. Rev. Lett. 114, 245503 (2015).

[15] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
Öhberg, E. Andersson, and R. R. Thomson, Phys. Rev. Lett.
114, 245504 (2015).

[16] S. Mukherjee and R. R. Thomson, Opt. Lett. 40, 5443
(2015).

[17] S. Weimann, L. Morales-Inostroza, B. Real, C. Cantillano,
A. Szameit, and R. A. Vicencio, Opt. Lett. 41, 2414 (2016).

[18] S. Xia, Y. Hu, D. Song, Y. Zong, L. Tang, and Z. Chen, Opt.
Lett. 41, 1435 (2016).

[19] Y. Zong, S. Xia, L. Tang, D. Song, Y. Hu, Y. Pei, J. Su, Y. Li,
and Z. Chen, Opt. Express 24, 8877 (2016).

[20] C. Huang, F. Ye, X. Chen, Y. V. Kartashov, V. V. Konotop,
and L. Torner, Sci. Rep. 6, 32546 (2016).

[21] E. Travkin, F. Diebel, and C. Denz, Appl. Phys. Lett. 111,
011104 (2017).

[22] S. Xia, A. Ramachandran, S. Xia, D. Li, X. Liu, L. Tang, Y.
Hu, D. Song, J. Xu, D. Leykam, S. Flach, and Z. Chen,
Phys. Rev. Lett. 121, 263902 (2018).

[23] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and
Y. Takahashi, Sci. Adv. 1, e1500854 (2015).

[24] R. Drost, T. Ojanen, A. Harju, and P. Liljeroth, Nat. Phys.
13, 668 (2017).

[25] Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, Phys.
Rev. B 85, 205128 (2012); S. Kajiwara, Y. Urade, Y. Nakata,
T. Nakanishi, and M. Kitano, Phys. Rev. B 93, 075126
(2016).

[26] V. Goblot, B. Rauer, F. Vicentini, A. Le Boité, E. Galopin,
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