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Observation of discrete vortex solitons in optically-induced photonic lattices

Dragomir N. Neshev, Tristram J. Alexander, Elena A. Ostrovskaya, and Yuri S. Kivshar
Nonlinear Physics Group, Research School of Physical Sciences and Engineering,

Australian National University, Canberra ACT 0200, Australia

Hector Martin, Igor Makasyuk, and Zhigang Chen
Department of Physics and Astronomy, San Francisco State University, CA 94132 and

TEDA College, Nankai University, Tianjin, China

We report on the first experimental observation of discrete vortex solitons in two-dimensional
optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the
lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a
broad class of singular beams.

PACS numbers: 42.65.Tg, 42.65.Jx, 42.70.Qs

Periodic photonic structures and photonic crystals re-
cently attracted a lot of interest due to the unique ways
they offer for controlling light propagation. Periodic
modulation of the refractive index modifies the diffrac-
tion properties and strongly affects nonlinear propaga-
tion and localization of light [1]. Recently, many non-
linear effects including the formation of lattice solitons
have been demonstrated experimentally in one- and two-
dimensional optically-induced photonic lattices [2, 3, 4,
5]. The concept of optically-induced lattices [6] relies
on the modulation of the refractive index of a nonlinear
medium with periodic optical patterns, and the use of a
weaker probe beam to study scattering of light from the
resulting periodic photonic structure.

So far, only simple stationary structures have been
described theoretically and generated experimentally in
optically-induced lattices [2, 3, 4, 5, 6]. One of the most
important next steps is the study of nonlinear modes with
a nontrivial phase such as vortices, the fundamental lo-
calized objects appearing in many branches of physics. In
optics, vortices are associated with the screw phase dis-
locations carried by diffracting optical beams [7]. When
such vortices propagate in a defocusing nonlinear Kerr-
like medium, the vortex core becomes self-trapped, and
the resulting structure is known as an optical vortex soli-
ton [1]. Such vortex solitons are usually generated ex-
perimentally on a broad background beam [8, 9]. They
demonstrate many similarities with the vortices observed
in superfluids and Bose-Einstein condensates.

In contrast, optical vortex solitons do not exist in
a self-focusing nonlinear medium; a ring-like optical
beam with a phase dislocation carrying a finite or-
bital angular momentum [10] decays into the fundamen-
tal solitons flying off the main ring [11]. This effect
was first observed experimentally in saturable Kerr-like
nonlinear medium [12], and then in photorefractive [9]
and quadratic [13] nonlinear media in the self-focusing
regime.

Recent theoretical studies of the discrete [14] and con-
tinuous models of nonlinear periodic lattices [15, 16] sug-

gest that the vortex-like structures can be supported by
the lattice even in the self-focusing regime. In this Letter,
we report on the first experimental observation of discrete
(lattice) vortex solitons and demonstrate, both theoret-
ically and experimentally, that localized optical vortices
can be generated in a self-focusing nonlinear medium, be-
ing stabilized by the two-dimensional periodic potential
of a photonic lattice.

To lay a background for our experiment, first we study
numerically the generation of discrete vortex solitons in
a two-dimensional photonic lattice optically-induced in a
photorefractive crystal. Since in a typical experiment the
input beam is radially-symmetric and does not posses the
shape and symmetry of a stationary lattice vortex [15,
16], it is crucially important to understand whether the
generation of such a state is possible from a broad range
of initial conditions.

A two-dimensional square lattice created by ordinary
polarized beams can be described by the intensity pattern
Ig(x, y) = I0 sin2(πx/d)sin2(πy/d), where I0 is the max-
imum lattice intensity, and d is the period [Fig. 1(d)].
Within the approximation of isotropic photorefractive
nonlinearity, the evolution of a extraordinary probe beam
u is governed by the nonlinear equation [6]

i
∂u

∂z
+

1

2
∆⊥u −

V0u

1 + Ig(x, y) + |u|2
= 0, (1)

where ∆⊥ is the two-dimensional Laplacian, the intensi-
ties are normalized to the dark irradiance Id of the crys-
tal, V0 = γnlx

2

0
/2 (V0 = 1 corresponds to a bias field of

74.6 V/cm), γnl ≡ k2

0
n4

er33E0, and ne is the refractive in-
dex for extraordinary polarized beams. For our choice of
polarity of the bias field, E0, nonlinearity exhibited by the
probe beam is self-focusing. The transverse coordinates
are measured in the units of x0 = d/2, and the propa-
gation distance, in units of k0nex

2

0
. In our simulations

we assume normalization corresponding to the experi-
mental parameters. Consequently, x = 1 corresponds to
14 µm and z = 1 corresponds to propagation distance of
5.86 mm.
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FIG. 1: Numerical results. (a) Input vortex and (d) linear
lattice, I0 = 10Id. (b) Linear diffraction at z = 2 and (c)
nonlinear propagation at z = 10 in a homogeneous medium.
(e,f) discrete diffraction and discrete vortex soliton on the
lattice, respectively at z = 10 and V0 = 16.09.

To answer the question of stable discrete-vortex gen-
eration from a radially-symmetric input beam carrying
a screw phase dislocation of unit topological charge, we
study numerically a wide range of initial beam widths
and intensities. At narrow widths, the spectrum of the
initial beam is wide and may couple strongly to the
higher-order spectral bands, leading to rapid diffraction
and break-up of the initial beam. Broad beams will in-
stead populate many lattice sites, and so result in a beam
structure far from any stable stationary configurations.
Generation therefore requires a balance between the non-
linearity and beam diffraction properties for coupling to
one of the stationary vortex states on the lattice.

Several different types of discrete vortices can be sup-
ported by the lattice. The lowest-order symmetric off-
site [Fig. 1(f)] and on-site (not shown) vortex states were
first suggested theoretically in Refs. [15, 16] for a vortex
centered between four sites of the lattice or on a single
lattice site, respectively. Asymmetric stationary vortex
states can also be supported by the lattice. The off-site
discrete vortex shown in Fig. 1(f), however, represents
the state with the strongest coupling between its lobes.
It can be generated from a broader class of initial condi-
tions, which facilitates its experimental observation. For
the given experimental conditions of a saturation corre-
sponding to I0 = 10 and an initial beam peak intensity of
roughly I0/5, we find the optimal generation conditions
for an off-site vortex are given by an input beam of the
form u(r, θ) = a r exp(−wr2 + iθ), where (r, θ) are the
polar coordinates, a = 3.3, and w = 1 [Fig. 1(a)].

First, we simulate the vortex propagation without the
lattice. In the absence of nonlinearity, the input beam
diffracts, as shown in Fig. 1(b) for z = 2. In the non-
linear regime, the vortex decays into a diverging pair of
out-of-phase solitons [Fig. 1(c)]. This type of azimuthal
instability is generic for vortex-carrying beams, however

FIG. 2: Dependence of the vortex state at the crystal output
(z = 8.2 mm, I0 = 10Id) on the strength of the nonlinearity,
V0 (or bias field). (a-c) Intensity distribution for V0 = 2.7,
V0 = 8.04 and V0 = 16.09, respectively. (d) phase distribu-
tion corresponding to the stationary state (c). Dashed lines
correspond to the position of the four intensity lobes. Side-bar
- phase colour map.

the exact number of filaments depends on the input beam
parameters [11]. The filaments diverge due to the angular
momentum carried by the initial vortex beam [9, 12, 13].

In the presence of a two-dimensional lattice and at
low probe-beam intensities (or |u|2 in Eq. 1 neglected),
the input beam exhibits discrete diffraction, whereby its
power tends to re-distribute between the neighboring lat-
tice sites, as shown in Fig. 1(e) for relatively long prop-
agation distance z = 10. Remarkably, in the nonlinear
regime, the input beam does not decay or diffract due to
decoupling from the linear transmission spectrum, and
instead transforms into a four-lobe structure [Fig. 1(f)].
It corresponds to a discrete vortex soliton [14, 15], which
propagates stably in the lattice even under strong non-
linear perturbations induced by the transient ‘breathing’
mode, seen as slight rotational oscillations in the numer-
ical simulations [Fig. 1(f)]. This stable vortex state is
generated by centering the initial vortex beam between
four sites of the optical lattice, and therefore corresponds
to an off-site discrete vortex.

Next, we study the localization of the off-site discrete
vortex for different strengths of nonlinearity (bias field)
[Figs. 2(a-c)]. At low bias field, the focusing effect of non-
linearity is not sufficient to form a discrete vortex soliton,
and the beam diffracts on the lattice [(a)]. A discrete vor-
tex state is generated for stronger bias fields [(b,c)], and
its confinement by the lattice varies with nonlinearity.
In order to verify that the structure generated by the
input singular beam on the lattice is a discrete vortex,
and not four uncoupled solitons, we analyzed the phase
structure of the output state. In full agreement with ear-
lier analysis [14, 15], the generated discrete vortex soliton
is composed of four phase-correlated lobes with a total
phase ramp of 2π [Figs. 2(d)]. The observed phase struc-
ture closely resembles that of a soliton cluster [17], with
the main difference that the discrete vortices are robust
and stationary structures.

Finally, we demonstrate the generation of the discrete
vortices in experiment. Our experimental setup (Fig. 3)
is similar to that reported earlier in Refs. [5, 18]. An
argon ion laser beam (at the wavelength λ = 488 nm) is
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FIG. 3: Experimental setup. PBS: Polarizing beam splitter,
SBN: Strontium Barium Niobate crystal.

FIG. 4: Experimental observation of an optical vortex prop-
agating with (rows 1,2) and without (row 3) an optically-
induced lattice. (a-1) the input pattern of the lattice, where
the ring indicates the input vortex location; (a-2) and (a-3)
the vortex beam at crystal output and input without bias
field; (b-d) the vortex beam at output for bias fields of 600,
1200, and 3000 V/cm, respectively. Row 2 – three dimen-
sional plots of vortex beam intensity.

collimated and then split with a polarizing beam splitter.
The ordinarily-polarized beam (o-beam) is focused onto
a rotating diffuser, turning into a partially spatially inco-
herent source. A biased photorefractive crystal (SBN:60,
5 × 5 × 8 mm3, with r33 = 280 pm/V) is employed to
provide a self-focusing non-instantaneous nonlinearity as
in experiments with partially coherent solitons [19].

To generate a two-dimensional photonic lattice, we use
an amplitude mask and modulate spatially the otherwise
uniform o-beam after the diffuser. The mask is then im-
aged onto the input face of the crystal, thus creating a
partially coherent pixel-like input intensity pattern [18].
The extraordinarily-polarized probe beam (e-beam) is
sent through a transmission vortex mask with unit topo-
logical charge, and then focused onto the crystal input
face, propagating collinear with the lattice. In addition,
a uniform incoherent background o-beam (not shown) is
used as “dark illumination” for fine-tuning the nonlin-
earity [19]. The input and output faces of the crystal are
imaged onto a CCD camera and the beam separation was
achieved by blocking one of the components and quickly
recording the other one.

Our typical experimental results are summarized in
Fig. 4. A two-dimensional square lattice is created first,
with the principal axes oriented in the diagonal direc-
tions, as shown in Fig. 4(a-1). Since the lattice has a spa-
tial period of only 28 µm, this orientation favors its stable
formation [5]. In addition, the lattice beam is partially
spatially incoherent (spatial coherence length ∼100 µm),
which also entails stable lattice formation due to suppres-
sion of incoherent modulation instability [20]. The result-
ing periodic intensity pattern acts as an photonic lattice,
with the lattice sites (intensity maxima) corresponding
to the minima of the periodic potential experienced by
the probe beam.

The input vortex beam, shown in Fig. 4(a-3), is then
launched straight between four lattice sites, as indicated
by a bright ring in the lattice pattern (a-1). The vortex
beam has an intensity about 5 times weaker than that
of the lattice. In this optical medium, the o-polarized
lattice exhibits only a weak nonlinearity as compared to
that experienced by the e-polarized vortex beam [6] and,
therefore, it remains nearly invariant as the bias field
increases, with only a slight increase of its intensity con-
trast. In agreement with our numerical modeling, the
vortex beam exhibits discrete diffraction when the non-
linearity is low, whereas it forms a discrete vortex soliton
at a higher nonlinearity. In Fig. 4(b-1,2), discrete diffrac-
tion of the vortex beam is shown at a low bias field of
600 V/cm. The symmetry of the observed diffraction
pattern is distorted due to slight asymmetry of the in-
put vortex profile and inherent defects inside the crystal.
When the bias field is increased to 1200 V/cm [Fig. 4(c-
1,2)], partial focusing of the vortex beam is observed. In
this case, more energy of the vortex beam goes to the cen-
tral four cites, but the side lobes still share a significant
amount of the energy. Importantly, for a higher nonlin-
earity, i.e. at a bias field of 3000 V/cm, a discrete vortex
soliton is clearly observed [Fig. 4(d-1,2)], with most of
the energy concentrated at the central four sites along
the principal axes of the lattice, indicating that a bal-
ance has been reached between the discrete diffraction
and self-focusing experienced by the vortex.

As predicted by the theory, the observed discrete
diffraction and self-trapping of the vortex beam in the
photonic lattice is remarkably different from that in a
homogeneous medium. In Fig. 4 (row 3), we show the
output intensity patterns of the vortex beam without the
lattice, but for the same bias field (nonlinearity). At a
low bias of 600 V/cm, the vortex beam is slightly mod-
ulated, but it maintains a doughnut-like diffraction pat-
tern [Fig. 4(b)]. At a higher bias of 1200 V/cm, the vor-
tex beam breaks up into several filaments due to the az-
imuthal instability in the self-focusing crystal [Fig. 4(c)].
After the break-up, the filaments tend to form solitons
and move away from their original locations [Fig. 4(d)]
towards the direction of crystalline c-axis due to the
diffusion-induced self-bending enhanced by the high bias
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FIG. 5: Phase structure measurements. (a) Discrete vortex
soliton for a lattice period of 20 µm. (b-d) Interferograms of
the vortex soliton with a weak broad coherent beam, whose
relative phase is changed in steps of π/2.

field [21]. In contrast, the vortex beam is well trapped by
the optical lattice, which suppresses the rich instability-
induced dynamics (rotating, diverging, and self-bending)
of the filaments in a homogeneous nonlinear medium.

The observed discrete vortex soliton is a robust struc-
ture, which can be reproduced with different experimen-
tal parameters such as lattice spacing. In Fig. 5(a)
we show another example of the discrete vortex soliton
formed on a lattice with a period of 20 µm. The four-
lobe output intensity pattern was stable against ambient
perturbations such as air vibration. To verify the non-
trivial phase structure of the discrete vortex, we set up
a Mach-Zehnder interferometer with a piezo-transducer
(PZT) mirror in the reference-beam path. A weak quasi-
plane wave beam was introduced for interference with
the vortex after it exited the crystal. We then actively
varied the relative phase between the plane wave and the
vortex beam by the PZT mirror, and obtained a series of
interferograms for testing of the phase distribution of the
vortex. In this way, we avoid errors coming from the in-
herent noise in the reference beam phase front. Three of
such interferograms taken as the mirror was driven grad-
ually towards one direction are presented in Fig. 5(b-d),
which show clearly (see colour plots) that one of the four
lobes increases its intensity whereas the intensity of the
corresponding diagonal lobe decreases. Furthermore, the
lobe with the strongest intensity is alternating among
the four lobes. From these interferograms, we confirmed
that the four lobes resulting from a discrete vortex soli-
ton maintain a nontrivial phase relation. Since a vortex
with a unit topological charge has a total phase ramp of
2π, the relative phase between the four lobes changes in
steps of π/2.

To confirm that the vortex trapping in the lattice is
a result of the nonlinear self-action rather than simply
due to the increased depth of the lattice potential, we
perform additional experiments, where we significantly
lower the intensity of the input beam while keeping the
bias field unchanged. In this case we observe that the
vortex experiences discrete diffraction similar to Fig. 4(b-
1,2), as more energy of the vortex beam transfers further
away from its center.

In conclusion, we have studied numerically the prop-

agation of an optical beam with a phase dislocation in
a two-dimensional periodic photonic structure, and pre-
dicted the stabilizing effect of the lattice on the vortex.
We have observed experimentally the formation of a ro-
bust discrete optical vortex in two-dimensional optically-
induced photonic lattices. The vortex has been generated
in a self-focusing nonlinear medium for a variety of input
conditions and lattice parameters. The experiments con-
firmed that the lattice stabilizes the vortex beam in the
form of a non-diffracting four-lobe stationary structure
with a screw phase dislocation. Our results can be useful
for other branches of physics such us the nonlinear dy-
namics of Bose-Einstein condensates in optical lattices,
where similar structures can be predicted theoretically
and observed in experiment.

This work was supported by the Australian Research
Council, U.S. AFOSR, and Research Corp. We thank
A. A. Sukhorukov for valuable discussions.
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