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We experimentally and theoretically demonstrate a spatial
diametric drive acceleration of two mutually incoherent
optical beams in 1D optical lattices under a self-defocusing
nonlinearity. The two beams, exciting the modes at the
top/bottom edges of the first Bloch band and hence experi-
encing normal/anomalous diffraction, can bind together
and bend in the same direction during nonlinear propaga-
tion, analogous to the interplay between two objects with
opposite signs of mass that breaks Newton’s third law.
Their spatial spectrum changes associated with the acceler-
ation are analyzed for different lattice modulations. We find
that the acceleration limit is determined by the beam excit-
ing the top band edge that reaches a saturated momentum
change prior to the other pairing beam. © 2017 Optical
Society of America
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Although negative mass is still a concept appearing mostly in
theory, its associated dynamics is counterintuitive and fascinat-
ing [1–9]. In particular, as predicted from Newton’s third law of
motion, the interaction between two objects with opposite
mass may lead to their locked acceleration in a diametric drive
fashion [10], where the positive mass experiences an attracting
force while the negative one experiences a repelling force.
Realizing such a prediction was hampered due to the failure
in searching negative mass. It might be possible, however, to
study this interaction by using an electron of effective negative
mass in crystals, where the effective mass of a Bloch state is
defined from the second derivative of the energy band.
Unfortunately, such diametric drive acceleration for electrons
has never been realized. Attention turned to photonic analog
that could demonstrate the interaction of optical states with
positive and negative “mass.” Analogous to the definition in

condensed matter physics, the mass sign of an optical state
in the temporal configuration can be switched by employing
different types of dispersion relationship (analogous to that
of the energy band for electrons). Typically, an optical pulse
propagating in the anomalous (normal) dispersion region
corresponds to a state of positive (negative) mass. Under the
action of an optical Kerr nonlinearity, for instance, two pulses
of different mass sign can be forced to accelerate synchro-
nously [6,7].

In the spatial domain, diffraction can be engineered by using
periodically arranged waveguide arrays, allowing coexistence of
anomalous and normal diffractions [11]. The interplay of
optical states locating in the same region of either type of dif-
fraction has been investigated in a variety of scenarios, always
showing the behavior of either attraction or repulsion [12,13].
Nevertheless, to the best of our knowledge, two light beams
experiencing different diffraction types (i.e., of opposite mass
signs) in such spatial optical structures have not been consid-
ered in terms of their interaction and propagation dynamics.
They may exhibit a diametric drive acceleration under the effect
of a nonlinearity that may offer new ways for light steering and
control.

In this Letter, we demonstrate the nonlinear interaction of
two mutually incoherent beams with opposite signs of effective
“mass” in a one-dimensional optical waveguide array. Under
proper initial conditions, the two beams are able to join forces
and propagate along the same bending trajectory. Such a
diametric drive experiment is performed in titanium-diffused
waveguides in a LiNbO3 crystal, where a self-defocusing non-
linearity offers the “forces” for the interaction. Our experimen-
tal results are corroborated with numerical simulations.

The cross-phase modulation of the two incoherent beams
in 1D photonic lattices embedded in a LiNbO3 crystal is
governed by the normalized coupled nonlinear Schrödinger
equations [14,15]
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where x and z are the dimensionless transverse and longitudinal
coordinates, respectively, and they are linked to the laboratory
coordinates (X , Z ) by x � X ∕d and z � Z∕�2kd 2� (d is the
lattice period and k is the wavenumber within the crystal); ψ1;2
are the slowly varying envelopes of the two incident beams,
V �x� � 2kd 2k0A cos2�πx� (where k0 is the vacuum wavenum-
ber and A is the lattice modulation depth) is the normalized
periodic potential associated with the waveguide array, and
Γ is the normalized nonlinear coefficient related to the photo-
refractive photovoltaic effect [14,15].

From the Bloch theorem, the translation symmetry can
introduce Bloch transmission bands in the momentum space
(propagation constant β versus transverse wave vector kx) sep-
arated by the forbidden gaps [16]. Normal and anomalous
diffraction relationships coexist in each band. Without loss
of generality and for a more feasible experiment, the Bloch
band consisting of fundamental modes is considered, as sche-
matically plotted in the first Brillouin zone (BZ) in Fig. 1(a).
The normal and anomalous diffraction regions are separated by
a nondiffraction point. Two incoherent beams located in differ-
ent diffraction regions can be employed for our study. As a typ-
ical example, two beams matching the Bloch modes at top (Γ
point) and bottom (M point) band edges are employed and
they are marked as Γ- and M- beams, respectively. In the linear
regime, the two beams behave differently when they encounter
a negative defect (an index change lower than the lattice modu-
lation) embedded in the waveguide array. Γ-beam experiences a
“reflection” when it meets the defect [Fig. 1(b)], similar to the
beam dynamics in common homogeneous media as a light
beam of normal diffraction tends to travel toward the high-
index region due to Snell’s law. By using the paraxial propaga-
tion equation ∂ψ∕∂z � iD∂2ψ∕∂x2 (where D is the diffraction
coefficient), one can infer that the beam dynamics in normal
and anomalous diffraction regions are conjugate to each other.
Therefore, on the contrary, M-beam tends to be attracted by
the low-index defect [Fig. 1(c)]. Under the action of a self-
defocusing nonlinearity, either of them can induce a negative
potential by itself. When they interact in the configuration with

a beam-center mismatch as typically plotted in Fig. 1(d),
Γ- and M-beams tend to move along the same transverse
direction (here leftward) as a result of a repulsion and an attrac-
tion forces brought by each other. If the initial condition is
elaborately chosen, the two beams are able to bind to accelerate
together.

Our experimental setup is shown in Fig. 2. We use two
different lasers to launch two mutually incoherent beams
(λ � 532 nm) for granting the cross-phase modulation be-
tween them. Each beam, extraordinarily polarized and featured
with a controllable amplitude modulation (a slit for Γ-beam
and two parallel slits for M-beam), is sent to the Fourier plane
of a 10× objective lens by a 4-f system (not shown here), and
then becomes a Gaussian or a cosine Gaussian beam at the front
facet of the waveguide array, fabricated by titanium-diffusion
in a copper-doped LiNbO3 crystal that has a self-defocusing
nonlinearity arising from the bulk photovoltaic effect [14,15].
The waveguide length is 14 mm and the array period d is
6.8 μm. The ratio between the peak intensities of the incident
Γ-beam and M-beam is about 1.15∶1. The incident beam pat-
terns are captured by CCD1, as shown in the inset of Fig. 2.
The power and polarization of both beams are adjusted by em-
ploying a half-wave plate and a polarizer inserted in the 4-f
system. The beam patterns at the output of the crystal and their
spatial spectral components are recorded by CCD2 and CCD3,
respectively.

In our experiment, the Gaussian beam and the cosine
Gaussian beam, separated by a proper distance, are launched
nearly at normal incidence into the lattice, and their spectral
components are distributed around the center and the boun-
daries of the first BZ to excite the Bloch modes of Γ point and
M point, respectively. First, their independent propagations are
examined without considering the influence of each other. At a
sufficiently low input power, both beams experience linear
diffraction and their outputs are shown in Figs. 3(a) and 3(b).
By employing a properly higher input power, Γ-beam becomes
wider compared to the linear output [Fig. 3(c)], while M-beam
evolves into a gap soliton as a result of the balance between the
self-defocusing nonlinearity and the anomalous diffraction
[Fig. 3(d)] [14,15]. The beam centers (obtained by calculating
the “center of mass” of beams along X direction viaR
X dX

R
IdY ∕

RR
IdX dY , where I is the beam intensity) of

the nonlinear outputs almost coincide with that of the linear
counterparts. Once the two beams are launched into the lattices
simultaneously, the centers of both beams shift to the left under
the interaction [Figs. 3(e) and 3(f )]. The shift for Γ-beam is not

Fig. 1. (a) Typical first Bloch band of 1D photonic lattice, where the
normal and anomalous diffraction regions, separated by no-diffraction
points (black), are shaded in blue and red, and top and bottom band
edges are marked by Γ and M, respectively; (b) and (c) show numeri-
cally linear propagation of Γ-beam and M-beam in the lattice with an
embedded negative defect (marked by a white-dashed line), and the
yellow arrows point to lateral beam movement due to the presence
of the defect; (d) negative refractive index changes (upper panel) in-
duced byΓ-beam (red) andM-beam (blue) plotted in the bottom panel,
where the arrows show the directions of transverse shifts of the two
beams influenced by each other under a defocusing nonlinearity.

Fig. 2. Experiment setup. L1, L2, L3, convex lenses; BS, beam split-
ter; MO, microscope objective; LNWA, lithium niobate waveguide
array. The insets are incident patterns of Γ- and M-beams recorded
by CCD1.
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as obvious as that for M-beam. This is reasonable if one looks
into the output beam profiles in detail shown in Fig. 3(g).
Indeed, Γ-beam is separated into two parts due to the nonlinear
interaction, and only the left part is repelled by M-beam.
Therefore, the overall shift of Γ-beam becomes subtle as aver-
aged by the right part. This is furthermore verified by the mea-
surements in the Fourier space, where the spectrum for Γ-beam
is accordingly divided into two components. Both parts move
toward the higher-frequency side compared to the linear case,
and hence the net momentum change for the whole Γ-beam
does not become significant [Fig. 3(h)]. In contrast, all the
spectral components for M-beam move in the same direction
during the nonlinear interaction, indicating a larger movement
of this beam in real space. Besides, these spectra at the boun-
dary of the first BZ have an opposite (net) change as compared
to those for Γ-beam, as a result of different diffraction types that
the two beams experience. By using the parameters similar to
those in the experiment, we numerically calculated the outputs
and the associated spectra as presented in Figs. 3(i) and 3(j),
and they agree well with the experimental results.

Furthermore, owing to the short propagation distance
(14 mm as limited by the crystal length) in the experiment,
the beam dynamics can be better visualized in Fig. 4 that ex-
tends the previous simulation to a longer distance. Here each
beam is filtered out numerically to present in different panels.
They show clearly a diametric drive acceleration, but only part
of Γ-beam is bound with M-beam [Figs. 4(a) and 4(b)]. This is
consistent with the analysis in Ref. [6], where the diametric

drive acceleration is formed by a soliton pursuing a dispersive
wave. To obtain a shape-preserving bound state, the soliton is
the one (of symmetrical shape) that can exist independently,
but the dispersive wave should be carefully designed according
to the soliton profile and eventually have an asymmetric shape.
In our case, although Γ-beam (analogous to the dispersive
wave) is carefully chosen in terms of power and width, its sym-
metrical pattern does not meet the requirement (asymmetry)
of a perfect solution. Consequently, Γ-beam is dramatically
shaped during the interaction. Although the beams contribut-
ing to the diametric drive move along the same path, the
associated spectral change rate τ�z� (defined by the shift
per unit propagation distance) for Γ-beam is much larger
[Figs. 4(c) and 4(d)]. This difference originates from different
curvatures of diffraction relationship. Under the paraxial con-
dition described by Eq. (1), the diffraction is mainly deter-
mined by β 0 0, which is −0.0946 (0.4373) for Γ (M) point in
our waveguide lattice (the lattice modulation is A � 5.0e − 4).
According to the definition of momentary velocity v�z� �
β 0 0τ�z� [6], the spectrum of Γ-beam will thus attain a larger
shift rate than that of M-beam. When the spectrum approaches
the nondiffraction point where infinite mass is defined, the ac-
celeration is gradually reduced and eventually becomes zero [7],
analogous to that a relativistic particle cannot be accelerated to
the vacuum speed of light as its mass tends to be infinite [17].
At this time, both beams stop acceleration, and their spectral
shifts saturate accordingly. Since Γ-beam reaches this limit far
prior to M-beam, it leads to the velocity saturation of this
bound state. In addition, our preliminary numerical results
show that the mutually coherent Γ-beam and M-beam can also
lead to a diametric drive acceleration.

The diffraction curvature around the top/bottom band
edges is likely to be altered by employing different lattice
modulations. The calculated β 0 0 for Γ and M points are plotted
in Fig. 5(a) as a function of the lattice modulation A.

Fig. 3. Experimental results for a spatial diametric drive acceleration
and the associated numerical simulations. (a, b) Linear and (c)–(f ) non-
linear outputs for Γ-beam or M-beam propagating (a)–(d) independ-
ently or (e, f ) under the cross-phase modulation. The vertical yellow
lines indicate the location of the beam centers. (g) Plots of the intensity
distribution obtained by integrating (e) and (f ) along Y direction,
and (h) their corresponding spectra (solid line). The dashed lines in
(h) are the spectra for the linear output. (i) and (j) show results from
numerical simulations corresponding to (g, h), respectively. The
arrows in (h) and (j) show the shift directions of the spectra contrib-
uting to the diametric drive acceleration.

Fig. 4. Numerical simulations of the diametric drive acceleration
extending the simulation in Fig. 3 in a propagation distance 4 times
longer than the crystal length (marked by the yellow-dashed vertical
lines). Upper and bottom rows show the side view of beam propaga-
tion and associated spectrum evolution of (a, c) Γ-beam or (b, d)
M-beam that are numerically filtered out, where the black- and
white-dashed horizontal lines mark the edge and nondiffraction region
of the first BZ, respectively.
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Their absolute values decrease when the lattice modulation is
tuned up, and the one associated with M point changes dras-
tically. In the lower depth modulation, since the band bottom
is much more curved than the band top, the spectrum for
M-beam is mostly located around the boundaries of the first
BZ under the condition of diametric drive acceleration
[Fig. 5(b)]. When the lattice modulation is quite large, the
beam is tightly confined in a single waveguide and the well-
known tight-binding model can be approximately employed.
In this framework, the diffraction curve is described by a
cosine function [18], leading to the same absolute curvature
for the top and bottom band edges. This model is gradually
approached as the lattice modulation is increased. Thus for
a sufficiently high lattice modulation, M-beam can reach a lat-
eral shift in the spectrum domain comparable to that of Γ-beam
when they bound to accelerate [Fig. 5(c)]. Since the diffraction
experienced by Γ-beam is always larger than M-beam, the ac-
celeration saturation is only determined by Γ-beam.

In conclusion, we have experimentally and theoretically
demonstrated the spatial diametric drive acceleration of two

incoherent optical beams in photonic lattices under a self-
defocusing nonlinearity. It is found that, for the Bloch band
consisting of fundamental modes, the acceleration limit is de-
termined by the beam at the band top that always experiences
diffraction of less strength under different lattice modulations.
We expect that such a spatial diametric drive acceleration is
possible in a nonlinear medium even without periodic structure
by employing one beam with a nonlinearly induced negative
mass [19]. Our results may bring about a new route for
spatial light control by light, particularly when extending this
approach into 2D (transverse) cases.
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Fig. 5. (a) Second-order diffraction (β 0 0) for band top (red line) and
band bottom (blue line) calculated for different lattice modulation
depth A; (b, c) show the spectrum evolution associated with diametric
drive accelerations of Γ-beam and M-beam at lower (A � 1.5e−4) and
higher (A � 17.5e−4) lattice modulation depth, where the black- and
white-dashed lines mark the edge and the nondiffraction region of the
first BZ, respectively.
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