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Abstract: We introduce the concept of third-order Riemann pulses in nonlinear optical fibers.
These pulses are generated when properly tailored input pulses propagate through optical fibers
in the presence of higher-order dispersion and Kerr nonlinearity. The local propagation speed of
these optical wave packets is governed by their local amplitude, according to a rule that remains
unchanged during propagation. Analytical and numerical results exhibit a good agreement,
showing controllable pulse steepening and subsequent shock wave formation. Specifically, we
found that the pulse steepening dynamic is predominantly determined by the action of higher-order
dispersion, while the contribution of group velocity dispersion is merely associated with a shift of
the shock formation time relative to the comoving frame of the pulse evolution. Unlike standard
Riemann waves, which exclusively exist within the strong self-defocusing regime of the nonlinear
Schrödinger equation, such third-order Riemann pulses can be generated under both anomalous
and normal dispersion conditions. In addition, we show that the third-order Riemann pulse
dynamics can be judiciously controlled by a phase chirping parameter directly included in the
initial chirp profile of the pulse.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Simple Riemann waves (RWs) are implicit solutions of the inviscid Burgers’ equation (IBE),
that lies at the basis of fluid dynamics. These waves are of fundamental importance in studying
shock wave phenomena occurring not only in hydrodynamics but also in numerous other physical
systems [1–12]. Interest in RWs arises from the main role played by the IBE, a paradigm
nonlinear partial differential equation which is used to model nonlinear and turbulent systems of
various complexity, spanning dynamics encountered in e.g. astrophysics [13], Bose-Einstein
condensation [14], financial markets [15] and traffic flows [16,17]. Such an equation can be
derived from the Euler momentum equation in the absence of pressure gradient and external forces
[18], but it can also be obtained, under appropriate conditions, from the nonlinear Schrödinger
equation (NLSE). The latter well-established model is largely used to describe, for example, the
evolution of electromagnetic pulses in nonlinear optics [19,20], plasmas [21], and ocean wave
dynamics [22]. In particular, over the last few years, the NSLE analogy between optics and
hydrodynamics has increasingly favored the use of nonlinear optical waveguides (such as optical
fibers) as a testbench to investigate and observe nontrivial water wave phenomena, as well as
for establishing intriguing connections between these two physical domains [23]. Driven by the
initial observation of optical rogue waves [24], research efforts in optics have been primarily
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conducted in the self-focusing regime of the NLSE, where similarities with extreme events
formation in deep-water wave hydrodynamics have been extensively studied [25–28], especially
focusing on the process of modulation instability and associated nonlinear optical breather and
soliton solutions [24,29–31].

In parallel, the NLSE self-defocusing regime was also widely explored. In this case, optical
studies mainly focused on mimicking hydrodynamics phenomena described by the nonlinear
shallow water equation (NSWE) [32,33]. Indeed, when the nonlinearity is predominant
over dispersive effects (i.e., the strong defocusing condition), the NLSE can be reduced to
its semiclassical NSWE approximation. Compared to hydrodynamics, the optical envelope
amplitude plays the role of the water height and the pulse chirp (i.e. the derivative of the phase,
or instantaneous frequency) plays the role of the wave velocity [34–37]. In the framework of
nonlinear optical fibers, NSWE analogies have been the focal point of different studies, such
as the formation of optical tsunamis [38] and undular bores [39], the observation of photonic
dam-breaks [40,41], as well as of hydrodynamic optical soliton tunneling [42]. Among all
available analytical solutions of the NSWE [34], RWs have attracted a growing interest in the
framework of the above-mentioned link with shock wave phenomena. Recently, experimental
observations of random RWs in the context of an integrable turbulence [9], as well as the signature
and control of simple RWs in both temporal [7] and spatial [10] domains, have been reported. In
general, the NSWE consists of two coupled nonlinear partial differential equations, which are
determined by two Riemann invariant solutions. For simple RWs, the NSWE system reduces to
one IBE, as the envelope amplitude is proportional to the phase chirp, and this proportionality
relationship remains intact during nonlinear evolution. Nevertheless, higher-order dispersive
effects in optical fibers tend to prove detrimental to a Riemann wave evolution. For instance,
they lead (under certain conditions) to a continuous compression of the pulse envelope, and the
formation of extreme events [38]. To preserve the typical Riemann dynamics, low values of
high-order dispersion coefficients are preferable, as it was done for the observation of Gaussian
Riemann pulses in a highly nonlinear fiber (HNLF) [7]. However, a strong defocusing condition
is typically reached for short pulses featuring high power (and thus usually exhibiting a large
bandwidth), in a wavelength range where the dispersion is low (i.e., generally close to the fiber
zero-dispersion wavelength (ZDW)). In this regime, the ability to neglect the effects associated
with higher-order dispersion terms can therefore become questionable, and one may wonder
whether similar RW solutions can still retain analogous physical properties.

In this work, we introduce a new class of optical RWs, namely third-order Riemann pulses
(TRPs), and study these optical wave-packets in the context of nonlinear optical fiber propagation.
The dynamics of TRPs originate from the interplay between higher-order dispersion effects and
Kerr nonlinearity. Their nonlinear evolutions exhibit progressive steepening with constant peak
intensity and subsequent shock wave formation, with similar general dynamics yet different
characteristics and behaviors when compared with previously studied standard RWs. Guided
by our theoretical analysis, we also perform numerical studies demonstrating the formation of
TRPs by judiciously shaping an initial optical pulse before its injection into the fiber. Here,
TRPs are numerically investigated under different propagation conditions, and their properties
and differences with respect to RWs are discussed in detail. Unlike standard RWs, TRPs can
be generated even within anomalous dispersion propagation, and therefore can exist under the
self-focusing regime of the NLSE. Finally, we highlight a way to approximately control the TRPs,
where the shock point can be tuned by acting appropriately on a phase term imprinted onto the
initial optical pulse, without modifying the physical parameters of the fiber system.

2. Theory

The analysis starts from the generalized nonlinear Schrödinger equation (GNLSE), describing
pulse propagation in an optical fiber under the action of the Kerr nonlinearity and the mutual
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influence of both second- and third-order dispersions terms (SOD and TOD, respectively),
expressed as [18]:

i
∂E
∂z

−
β2
2
∂2E
∂t2

−
iβ3
6
∂3E
∂t3
+ γ |E |2E = 0. (1)

In Eq. (1), E(t,z) represents an optical pulse envelope, where t is the time coordinate in the
comoving frame of the pulse, traveling at the carrier frequency group velocity, and z is the
propagation distance. The parameters β2 and β3 are the SOD and TOD group velocity dispersion
(GVD) coefficients of the fiber, respectively. γ = k0n2 is the nonlinear Kerr coefficient, with
k0 and n2 denoting the vacuum wavenumber and the nonlinear refractive index, respectively.
Note that for our analysis, the GNLSE does not explicitly include Raman scattering effects or
linear losses. To provide a more general analysis, Eq. (1) is first reformulated in a dimensionless
coordinate system, yielding:
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where, A(T , Z) = E(T , Z)/
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P0 is the normalized electric field envelope, T = t/T0, and Z = z/LNL,
are the dimensionless temporal and longitudinal propagation coordinates, while β̈2
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0 )
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0 ) correspond to the dimensionless SOD and TOD terms, respectively.
LD = T2

0/|β2 |, L′
D = T3

0/|β3 | and LNL = (γP0)
−1 denote the corresponding SOD/TOD dispersion

and nonlinear lengths. Furthermore, to quantify the effective role of the optical pulse evolution
played by both SOD and TOD, we also define M = L′

D/LD = T0 |β2/β3 |. The normalization of
Eq. (2) is carried out by scaling the pulse duration by T0, and the peak power by P0. A way to
find arbitrary solutions to Eq. (2) is to express the dimensionless pulse envelope in a polar form,
by means of the Madelung transformation:

A(T , Z) = |A(T , Z)| exp
[︃
−

i
κ

T
∫

−∞
u(T ′, Z) dT ′

]︃
, (3)

with u(T,Z) a real function, and κ a real-valued coefficient. When considering the pure NLSE
case (i.e. where β3 is null), the parameter κ can be readily obtained from the normalisation
of the NLSE in terms of the caracteristic nonlinear length LNL and dispersion length LD of the
system, so that κ = ±| β̈ | [38]. Here however, we consider the predominant dispersive contribution
of TOD (provided by β3) in the GNLSE, and define κ as directly related to the ratio between
the nonlinear length LNL and the third order dispersion length L′

D, yielding κ = ±| β̄|. When
considering the strongly nonlinear regime, where L′

D >> LNL, the condition κ<<1 is satisfied,
and high-order derivatives with respect to the time T can be neglected (for reasonably smooth
pulse profiles). In such conditions, and similar to the case of a pure NLSE, Eq. (2) can be thus
reduced to a semiclassical approximation of the GNLSE, resembling the nonlinear shallow water
equation (NSWE) model [7,22,37]:
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where Z ′ = κZ, β̃ = β̈2
/β̄

2. The NSWE-like system in Eq. (4) is composed of two coupled
partial differential equations, and it admits two Riemann invariant solutions. Among them, a
specific solution, known as simple RW (or just RW), can be found by setting one of these Riemann
invariants to a null value, thus reducing the NSWE-like system to a single nonlinear wave equation,
the IBE. In the absence of TOD, simple RW solutions of the NLSE have been introduced [4]
and demonstrated [7,10] in both the spatial and the temporal domains as a solution of the IBE.
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Specifically, these standard RWs can only be generated under the strong self-defocusing regime of
the NLSE, where the Kerr nonlinearity greatly overcomes the magnitude of either diffraction or
dispersion effect. For Riemann pulses in nonlinear fibers, the latter condition reduces to the case
of considering only low normal dispersion and a dominant Kerr nonlinearity [4]. Nevertheless,
in a real-world optical fiber, standard Riemann pulses represent an ideal limit case. However,
they are difficult to achieve due to the undesired presence of higher-order dispersion effects,
which may significantly affect their propagation. Therefore, it is necessary to determine the
range of applicability of the RW solution, in situations where the GNLSE system can be well
approximated by its NSWE reduction. As an example, the value of M calculated from the pulse
and fiber parameters reported in Ref. [7] is equal to 96.87, while κ is equal to approximately
0.104 (with κ = ±| β̈| in the framework of a standard RW solution of the NLSE). In order to
investigate the effective influence of TOD on ordinary RW dynamics in this particular case,
we performed numerical simulations of RW pulse evolution by considering different values of
M, while keeping the value of κ constant (i.e., a condition that is achieved by only varying the
TOD coefficient). The relative variation of the pulse peak intensity at the shock distance was
used for a comparison with the ideal case (i.e., without TOD). We found that for M>100, the
discrepancy on the peak intensity variation remains under 3 %, thus making the effect of β3 small
enough to be considered negligible in this range. However, for values M<100, TOD starts to
significantly affect the evolution of RWs, so that the NLSE approximation (i.e., neglecting TOD
in the GNLSE) is no longer fully acceptable to describe RW propagation dynamics. Exploring the
existence of simple RW solutions, even for the GNLSE including higher-order dispersive terms,
is not only useful because its description via a NSWE-like system is significantly simplified, but
it is also advantageous as it allows for employing the well-known experimental methods already
implemented for the observation and control of standard RWs [7,9,39]. In this framework, we
consider the pulse envelope described in Eq. (3) and assume the chirp profile - or instantaneous
phase derivative - u(T,Z) to be:

u(T , Z) = (3|A(T , Z)| + a)2/3 −
β̈

2

β̄
2 , (5)

where the constant-coefficient a is the phase-chirping control parameter for the RW and κ = β̄<<1.
By substituting the chirp profile into Eq. (4), the NSWE-like system can be reduced to a nonlinear
shock wave equation, reading as:
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Remarkably, pulse propagation dynamics in nonlinear optical fibers, which is described by the
GNLSE in Eq. (1), can still be efficiently modeled in terms of a nonlinear Riemann wave, whose
implicit form is:
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where ATRP(T) = A(T,0) is the amplitude envelope at the onset of the propagation. Equation (7)
represents one of the key results of this study, illustrating how the GNLSE dynamics can, under
certain conditions, be approximated by a nonlinear Riemann pulse evolution. Corresponding
characteristic curves for Eq. (6) are expressed by the following parametric representation:
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2

2β̄
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6
(3|ATRP(T0, 0)| + a)4/3 −

aβ̄
3
(3|ATRP(T0, 0)| + a)1/3
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Z , (8)

where T0 is an arbitrary point in the temporal axis at the fiber input end (i.e., for Z = 0). The
characteristic lines start to cross in the T – Z plane at the shock point (TSC, ZSC), where the
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Fig. 1. (a) Three-dimensional (3D) dimensionless longitudinal intensity distribution of
GNLSE simulations (β̄= 0.013) used to model the evolution of a TRP in a nonlinear optical
fiber at the ZDW (top). The projected pulse intensity (bottom) is compared with the
characteristic lines obtained analytically from theory (white solid lines), showing shock
formation at Z = 30.63 and T=1.73. (b-c) Temporal profiles of (b) intensity and (c) chirp are
shown at selected distances, comparing IBE predictions (black solid lines) with GNLSE
simulations (blue solid lines). Dashed red lines highlight the input profiles for both temporal
intensity and chirp profiles.

tangent slope to the wave amplitude tends to infinity. The coordinates of this point can be readily
calculated by the relations TSC = T(T0SC, ZSC) and ZSC = −[∂G(T0SC, 0)/∂T]−1 where G(T, 0) =
5β̄/ 6 ( 3 |ATRP(T0, 0)| + a)4/3 − a β̄/ 3 ( 3 |ATRP(T0, 0)| + a)1/3, with T0SC being the value
corresponding to min[(–∂ |ATRP(T,0)|/∂T)−1]. Next, in order to demonstrate the validity of the
aforementioned approach, we perform a numerical study of TRPs propagating under different
conditions and parameters. Simulations are carried out via a split-step Fourier transform method
applied to Eq. (1). The input profile of the TRP is determined via Eq. (3), while the chirp profile
is numerically calculated via Eq. (5).

3. Third-order Riemann pulses at the zero-dispersion wavelength

At first, let us examine the nonlinear propagation of optical TRPs at the ZDW of the fiber. For
simplicity, the control coefficient a is not taken into consideration at this stage, but its contribution
will be discussed in the next sections. Under these conditions (i.e. a= 0 and β̈= 0), the pulse
evolution in the frame of the GNLSE is only impacted by a pure TOD (the SOD is vanishing),
and can be modelled by means of the “standard” IBE:

∂P
∂Z
+ P
∂P
∂T
= 0, (9)

where P(T , Z) = 2.5β̄ 3
√︂

3|ATRP(T , Z)|4. Therefore, Eq. (7) takes the form of standard RWs [4].
As an example, Fig. 1(a) illustrates the normalized longitudinal intensity distributions simulated
by solving the GNLSE, obtained by nonlinearly propagating a Gaussian TRP at the ZDW of an
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Fig. 2. Comparison between dimensionless GNLSE simulations and the corresponding
theoretical predictions (black solid lines) of Gaussian TRPs for different values of β̄. (a1-a3).
Normalized temporal intensity profiles extracted at the shock distances for β̄ equal to (a1)
0.1, (b1) 0.01, and (c1) 0.001. (a2-c2) Corresponding chirp profiles. Red dashed lines in the
upper and lower panels show, respectively, the temporal intensity and chirp profiles at the
onset of propagation.

optical fiber (i.e. under the exclusive influence of a positive TOD). Without loss of generality,
the normalized coefficient β̄ used in simulations is 0.013, which satisfies the conditions for the
NSWE approximation (κ<<1). A Gaussian TRP is considered at the onset of the propagation (i.e.
|ATRP(T,Z=0)| = exp(-T2/2)). The instantaneous frequency of a transformed-limited Gaussian
pulse is suitably adjusted so that the temporal chirp and amplitude profiles are not proportional,
in contrast to the standard case [38], but they instead follow the relationship given by Eq. (5).
Both the input intensity and chirp profiles are shown in Figs. 1(b) and (c), marked by dashed
red lines. Looking at the three-dimensional map in the upper panel of Fig. 1(a), we can observe
that the intensity profile of the initial Gaussian TRP experiences a progressive steepening of its
trailing edge during propagation. Subsequently, the formation of a gradient catastrophe (or shock
wave formation), where the envelope derivative tends to infinity, is observed. The assumption
β̄ = 0.013 leads to a shock formation that takes place at the dimensionless propagation distance
and time of Z = 30.63 and T = 1.73, respectively - see the 2nd panels in Figs. 1(b) and (c).
Here, the peak intensity of the TRP remains almost constant at the early stage of the nonlinear
evolution (i.e., up to the gradient catastrophe), and starts decaying significantly afterward. A
quantitative confirmation of these dynamics can be obtained from the analytical calculation
of the characteristic lines from the IBE in Eq. (9). The characteristic line representation is
useful to provide a parametric description of the unidirectional energy flow that is distinctive
of RWs [34]. Overlapping the projection of the simulated intensity evolution for the GNLSE
solution with the characteristic lines from the IBE (see white lines in Fig. 1(a)), one can notice
an excellent agreement, thus illustrating the validity of the analytical IBE description until
the shock is formed. This feature is also shown in Fig. 1(b) and (c), where we extracted both
temporal intensity and chirp profiles at selected distances from GNLSE simulations and IBE
theoretical predictions. Numerical profiles match very well with IBE profiles up to the shock
distance, after which the IBE model is not suitable anymore to describe the GNLSE system.
Since the characteristic lines start to intersect at the shock distance, theoretically giving rise
to a multi-valued solution, the IBE cannot be used to approximate the nonlinear evolution in
fibers after this point. It is worth noticing that the nonlinear steepening dynamics associated with
TRPs rely on the β̄ parameter, thus it is induced by the simultaneous action of nonlinearity and
TOD on a suitably pre-shaped input pulse. From a physical viewpoint, the behavior of TRPs is
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different from the well-known self-steepening phenomenon in optical fibers, originating from
the frequency dependence of the nonlinearity and in the absence of group velocity dispersion
[19]. The main role played by TOD on the pulse steepening process represents the different
characteristic of TRPs when compared with standard RWs, where the second-order dispersion
(along with the nonlinearity) is involved in the steepening process. More importantly, unlike
the standard Riemann pulses where the pulse chirp is a scaled replica of the amplitude [38], in
TRPs this proportionality relationship does not apply anymore. In fact, for TRPs the pulse chirp
and amplitude profiles are linked by the nonlinear function of Eq. (5). Here, the choice of the
parameter β̄ is not only central to achieve high-quality TRPs, but it also enables a versatile and
controllable shock wave formation. To prove this assertion, we compared in Fig. 2 the intensity
and chirp profiles corresponding to Gaussian TRPs obtained when considering three different
values of β̄. Each plot is selected from GNLSE simulations at the shock distance and compared
with analytical predictions obtained from the IBE in Eq. (9). For values of β̄ higher than 0.1, the
GNLSE simulations present discrepancies compared with IBE theory (especially in the pulse
trailing edge) even though a constant peak intensity evolution is still noticeable [Fig. 2(a1)].
This can be explained by observing the associated chirp profile in Fig. 2(a2): the pulse does not
reach a quasi-vertical front but, instead, its chirp profile starts developing oscillations, a typical
signature of shock wave formation and regularization [4,8]. As the value of β̄ decreases, the
amplitude of these oscillations significantly reduces, and the agreement between GNLSE profiles
and TRPs analytical predictions drastically improves (see Figs. 2(b1) and 2(b2)), until being
almost indistinguishable for values of β̄ lower than 0.001 (see Figs. 2(c1) and 2(c2)). We can
assert that the values of β̄ smaller than 0.1 are desirable for generating TRPs with satisfactory
quality and fidelity. It is noteworthy that the numerical results in Fig. 2 highlight the capability
to tune the shock distance via the adjustment of the parameter β̄: decreasing the value of β̄
slows down the steepening process, so that shock wave formation takes place at a proportionally
longer normalized propagation distance, as highlighted in Fig. 2. Conversely, along the time
axis, the quasi-vertical front in the pulse trailing edge is always located at the same point for
all three cases, regardless of the value of β̄. In practice, in nonlinear optical fibers with Kerr
coefficient γ, smaller values of β̄ can be achieved by using either high peak powers P0 or broader
pulse durations T0 of the input pulse. However, further control of TRP dynamics can be readily
achieved by using different pulse shapes for the TRP initial amplitude profile. As an example,
Fig. 3 illustrates the normalized longitudinal intensity evolution obtained for three different TRPs,
i.e., generated from a hyperbolic secant, a finite-energy Airy, and a flat-top pulse (the amplitude
profiles used for each case are provided in Table 1). For a relevant comparison, we performed
numerical simulations under the same conditions as for the Gaussian TRP in Fig. 1 (β̄= 0.013).
In each case, we extracted the temporal intensity profiles at the shock distance of the Gaussian
TRP, comparing the corresponding GNLSE profiles with analytical predictions from the IBE.
While the Gaussian TRP exhibits the formation of a gradient catastrophe at Z = 30.63, the shock
is observed at different locations for the other three cases. Basically, the smoothness of their
amplitude profiles is responsible for different nonlinear evolutions. For instance, a flat-top TRP
characterized by a steeper trailing edge displays an earlier shock formation, while the main lobe
of an Airy TRP, owing to its smoother profile, tends to steepen later on during propagation.
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Fig. 3. Normalized longitudinal intensity evolution of TRPs from GNLSE simulations with
β̄ = 0.013, corresponding to different initial pulse amplitude profiles: (a) Hyperbolic secant
pulse, (b) Airy pulse, and (c) Flat-top pulse. The white dots illustrate the shock locations
for each TRP evolution, highlighting the effect produced by each initial envelope on the
progressive pulse steepening. A TRP featuring a smoother input amplitude profile exhibits
a shock formation occurring at a longer propagation distance (when compared, under the
same propagation conditions, to a pulse with a steeper input amplitude profile). The lower
panels illustrate the corresponding TRP numerical profiles (blue solid lines) at Z = 30
(corresponding to the shock distance of the Gaussian TRP in Fig. 1 - see dashed white lines),
compared with analytical predictions (black solid lines). Red dashed lines mark the TRP
initial profiles for each case.

Table 1. Amplitude profiles used for the study of TRPs
with different initial shapes. The comparison among TRPs
with different amplitude profiles is carried out by choosing

the same scaling factor T 0 = 4.95 ps, for the pulse
duration and P0 = 9.42 W, for the peak power.

Third-order Riemann Pulse Amplitude Profile

Gaussian |ATRP(T) | = exp(-T2/2)

Hyperbolic secant |ATRP(T) | = sech(T)

Finite-energy Airy |ATRP(T) | = 2.05Airy(T)exp(0.1T)

Flat-top |ATRP(T) | = exp(-Tn/2) with n = 4

4. Third-order Riemann pulses under normal and anomalous group velocity dis-
persion

Now, we explore the dynamics of TRPs when their carrier wavelength moves away from the
ZDW, so that their propagation is ruled by the mutual influence of both SOD and TOD. By
assuming that only the parameter a in Eq. (6) is equal to 0 (i.e., the SOD coefficient is nonzero),
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Fig. 4. GNLSE simulations showing the evolution of a Gaussian TRP over 2.8 km of
dispersion-shifted fiber (DSF) at the ZDW and with pure negative TOD. Upper panels
illustrate the longitudinal (a) power, (b) spectrum, and (c) chirp obtained from numerical
simulations. Blue solid lines in (a) illustrate the characteristic lines from the IBE, while the
white dotted line in (b) marks the shock distance. Lower panels show the corresponding
profiles extracted at the shock distance along with analytical predictions from the IBE (black
solid lines), and their initial profiles (red dashed lines).

the GNLSE system can be modelled in terms of a modified IBE:

∂P
∂Z
+ (P + σ)

∂P
∂T
= 0, (10)

where σ = −β̈
2
/(2β̄). Consequently, Eq. (7) with the inclusion of the SOD term acquires

the form of shifted RWs [10]. Similar to the ZDW case, TRPs propagating under the mutual
influence of SOD and TOD exhibit a progressive steepening as well as a subsequent shock wave
formation, which is only determined by the parameter β̄. Here, the SOD influence simply consists
of imposing a transversal shift to the TRP along the time axis, thus enabling a control of the
temporal position where the gradient catastrophe occurs. Specifically, the shock distance is only
determined by the value of β̄, while the shock time can be controlled by changing the parameter
β̈. Remarkably, the sign of the SOD coefficient has no influence on the additional temporal shift
and TRPs can therefore be generated in both the normal and the anomalous dispersion regimes.
This permits their existence even in the self-focusing regime of the GNLSE, where standard RWs
are not permitted. In this regard, to better understand the physical origin of the TRP phenomenon
behind the mathematical formalism, we have numerically tested the propagation of a TRP using
the same propagation conditions (i.e., κ = 0.104) as a standard Riemann pulse in Ref. [7]. By
artificially increasing over two-orders of magnitude the SOD coefficient (up to M = 956), we
found that the peak intensity extracted at the shock distance varied less than 1 % compared to
the ideal case of an input pulse injected at the fiber ZDW (i.e., with M = 0). In this section, we
perform numerical simulations considering the realistic scenario of pulse propagation in a DSF.
Here, TRPs with a Gaussian amplitude and negative chirp profiles are considered, but we note that
other TRP conditions could also be readily excited. Numerical results, illustrated in Figs. 4 and 5,
refer to the case of a Gaussian TRP, which propagates in 2.8 km-long DSF with and without
the inclusion of either a normal or an anomalous GVD term. This is equivalent to selecting an
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Fig. 5. GNLSE simulations of TRPs in a DSF with negative TOD and with either normal
(upper TRP) or anomalous (lower TRP) GVD. Panel descriptions and parameters for both
cases are the same as in Fig. 4, besides the values of β2 being, for the upper and lower panels,
1.0793 and −1.0793 ps2 km−1, respectively.

optical fiber with both constant nonlinearity and GVD slope, while symmetrically shifting the
ZDW location (or the excitation wavelength). Parameters used in simulations are P0 = 9.42W,
T0 = 4.95ps, for the initial optical pulse, β2 = ±1.0793ps2 km−1, β3 = −0.1234ps3 km−1, and
γ = 0.5W−1 km−1 for the DSF (at λ0 = 1550 nm), which correspond to the normalized dispersion
coefficients β̈ = ± 0.097 and β̄ = −0.06. The initial Gaussian amplitude, in dimensional units, is
then defined as |ETRP(t, z = 0)| =

√
P0 exp(t2/2T2

0 ). Noteworthy, under these conditions, is that a
standard Riemann pulse cannot sustain the ideal evolution expected for RWs: the pulse would
either undergo a continuous temporal broadening or compression of its envelope, depending
on the sign of the GVD [38]. Differently, TRPs can maintain their typical Riemann dynamics.
At the ZDW (see Fig. 4), shock wave formation occurs at the leading edge of the pulse after
1.4 km of propagation in the DSF, with a shock temporal coordinate TSC estimated at −8.57 ps.
The presence of the steepest front at the leading edge of the pulse is here simply induced by the
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negative chirp [Fig. 4(c)]. Looking at the Fourier domain, the TRP spectrum (see Fig. 4(b))
exhibits an Airy-like shape, with a main lobe centered around λ = 1542 nm and a long tail
stemming from the sub-lobes extending in the long-wavelength edge. For carrier wavelengths far
from the ZDW, the effect of GVD is not negligible anymore. If the influence of TOD is small
enough, a standard Riemann pulse can thus provide a good approximation of Riemann wave
dynamics [7]. However, for higher TOD values (i.e., for decreasing M), the dynamics of the
pulse evolution differ from a standard Riemann pulse: TRPs must be considered in this case.
Moving away from the ZDW, and independently of the sign of the normalized SOD coefficient
(i.e. for propagation occurring in either the normal or the anomalous dispersion regime), the
TRPs evolution shown in Fig. 5 displays the same dynamics as those of Fig. 4, besides inducing
an offset in the shock time TSC (in that case being delayed to −1.97 ps). Characteristic lines
calculated from Eq. (10) confirm the prediction for all cases under study, displaying an excellent
match with GNLSE simulations. However, the influence of the GVD sign can be revealed by
comparing the TRPs chirp and spectral profiles: For normal dispersion (i.e. β2 = 1.0793 ps2

km−1), the TRP spectrum shifts towards lower wavelengths with respect to the ZDW case, with its
main lobe being located at around λ = 1531 nm. In addition, the temporal chirp profile acquires a
negative offset of −1.4 THz. Conversely, in the anomalous dispersion regime (i.e. β2 = −1.0793
ps2 km−1), the TRP spectrum is shifted towards longer wavelengths, with a main lobe centered
around λ = 1553 nm, and a positive offset of 1.4 THz for the pulse chirp. Note that, for the sake
of clarity in this study, we have neglected Raman scattering effects in our GNLSE simulations.
Such a delayed nonlinear response would in fact introduce a frequency shift during the pulse
evolution and thus affect the TRP steepening dynamics that would slightly deviate from the ideal
evolution described above. The impact of this Raman frequency shift is intrinsically linked to
the initial pulse bandwidth (and its overlap with the Raman gain) as well as the propagation
parameters. However, we have verified that the pulse evolution discrepancies are minimal and
will not lead to any qualitative change. For instance, we found that the inclusion of Raman
scattering (Raman fraction f R = 18 %) in the simulations reported in Fig. 5 led to a marginal
change in the pulse evolution, yielding a pulse peak power difference of only 0.04 % at the shock
point when compared to the ideal TRPs.

5. Optical control of third-order Riemann pulses

It is known from the literature that a transversal (or temporal) control of the shock dynamics
in standard RWs can be achieved by adding a linear phase term to the pre-designed temporal
chirp [10], thus offering a certain degree of freedom on the wave steepening process. In contrast,
for TRPs, both shock distance and time are uniquely determined by the choice of the carrier
wavelength. As the latter is adjusted, new values for both the shock distance and time can be
obtained. However, adding a linear phase term to the TRP does not allow to gain control over
the shock time (as it is typically obtained for standard RWs), but it leads instead to a significant
deterioration of the Riemann wave evolution. To govern TRPs propagation dynamics, a different
approach must be implemented. In this last section, we describe a way to achieve such control by
exploiting the a parameter of Eq. (7), whose adjustment allows for manipulating the nonlinear
evolution of TRPs by acting on the temporal chirp profile. The introduction of a generalizes the
class of TRPs: From a physical viewpoint, the parameter a brings a perturbation in the initial
chirp profile induced by the addition of an artificial offset in the pulse amplitude used to calculate
the TRP chirp in Eq. (5). This corresponds to introducing a background on the chirp profile as
well as modifying its magnitude. Generalized TRPs still feature pulse steepening and a constant
peak intensity evolution. However, the shock distance, time, and steepening direction can be
significantly modified. In Fig. 6, in order to illustrate the influence of the parameter a, we carried
out numerical simulations of Gaussian TRPs nonlinear evolution for the selected values. We use
here the same parameters as in Fig. 4 but consider β3 = −0.001234 ps3 km−1 to provide a better



Research Article Vol. 28, No. 26 / 21 December 2020 / Optics Express 39838

Fig. 6. GNLSE simulations of TRPs at the ZDW, with a pure negative TOD and for different
values of the control parameter a: (a) a = −10, (b) a = −3, (c) a = −1, and (d) a = 4.
Parameters used in simulations are the same as in Fig. 4, except for β3 = −0.001234 ps3 km−1

(or β̄ = −0.013). In the upper panels, blue solid lines overlapping each longitudinal intensity
distribution represent characteristic lines calculated from the nonlinear wave equation in
Eq. (6). Lower panels plot corresponding numerical intensity profiles (blue solid lines),
extracted at the shock distance, along with analytical (black solid lines) and initial (red
dashed lines) curves.

approximation of the Riemann wave evolution (i.e. using a smaller value of β̄ = −0.013 for a
better NSWE-like approximation). We observe that, for small values of a, the behavior of the
TRP is strongly nonlinear: the pulse envelope suffers a clear reshaping of its amplitude, which is
eventually followed by pulse steepening, whose properties (e.g. edge side) can be controlled by
adjusting a. Interestingly, we note that higher values of a lead to TRPs whose intensity profile
resembles those of a simple Riemann pulse. The shock formation can take place either on the
trailing or on the leading edge of the pulse, depending on the positive or negative sign of a,
respectively. In this case, a can be employed as a control parameter of the TRP, with the potential
to directly adjust both shock coordinates (i.e. time and distance). Once again, the characteristic
lines calculated by Eq. (6) agree very well with numerical simulations for each case. Finally, it
is worth mentioning that for very high values of a, the GNLSE evolution can be approximated
reasonably well by a shifted TRP, according to the following expression, where Eq. (7) can be
reduced as:

|ATRP(T , Z)| ≅

|︁|︁|︁|︁|︁ATRP

(︄
T − 3β̄a1/3 |ATRP(T , Z)|Z −

(︄
β̄

2
a4/3 −

β̈
2

2β̄

)︄
Z

)︄|︁|︁|︁|︁|︁ . (11)

Importantly, Eq. (11) provides a clear physical picture of the contribution brought by a on the
dynamics of TRPs: This coefficient not only induces an additional shifting term connected to the
SOD, but it is also responsible for the steepening process of the TRP, which for high values of a,
is similar to the one occurring in a standard Riemann wave.

6. Conclusion

We have introduced the concept of TRPs in the context of nonlinear fiber optics and investigated
analytically and numerically their properties under different propagation conditions. TRPs
exist in the presence of both the TOD and the Kerr nonlinearity and can be generated in both
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normal and anomalous group-velocity dispersion regimes, as well as exactly at the ZDW. During
propagation, TRPs undergo a progressive steepening while maintaining a constant peak intensity,
until they experience a shock wave formation. To control the TRP dynamics, we also introduced
a phase-chirping control parameter a to adjust the initial chirp profile of the pulses. Under the
same propagation conditions, diverse values of a induce different artificial backgrounds and
amplitude rescaling on the initial TRPs chirp profile, thus generalizing the concept of TRPs to a
broader class of nonlinear pulses. Remarkably, we have demonstrated that, for sufficiently high
values of a, the pulse evolution can be well-approximated by a shifted TRP, where the shock
properties (distance, time, and direction) can be controlled by acting on the values of a without
the necessity to change the optical fiber parameters.
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