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Abstract – We investigate Airy-soliton interactions in self-defocusing media with PT potentials
in one transverse dimension. We discuss different potentials in which the interacting beams with
different phases are launched into the media at different separation distances. During interactions,
there exist a primary collision region and a relaxation region accompanied by continuous inter-
action with the dispersed Airy tail. In the relaxation region, the beams exist as soliton-like and
breathers-like propagation. The beam width and mean power are influenced by initial separation,
phase shift and modulation depth of PT potentials. Especially, the collision distance decreases
with the spatial beam separation and the mean power possesses sinusoidal dependence on the
phase shift.
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Introduction. – Over the years, there has been an
increasing interest in the study for which the diffrac-
tion can be eliminated through effective light-field regu-
lation in many practical applications. Generally, there
are two kinds of methods which can be used to offset
the diffraction. One is to rely on the nonlinear (NL)
effect in a medium. The formation of spatial solitons
can be thought of as one of the most fundamental effects
which give rise to localized structures that propagate un-
changed, stabilized by the balance between the diffraction
and the NL effect [1]. The other are non-diffracting beams
in the free space. For instance, Airy optical beams, which
exhibit self-accelerating, non-diffracting, and self-healing
properties during propagation, were investigated theoret-
ically and experimentally by Siviloglou et al. [2,3] for the
first time in 2007. These novel properties of the Airy
beams are ideally suited for various applications ranging
from particle micromanipulation [4,5], self-bending plasma
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channels [6], light bullets [7], optical interconnects [8], im-
age signal transmission [9], super-resolution imaging [10],
intrapulse Raman scattering [11], to name just a few.

The potential arising from combining both methods to
investigate interactions of accelerating beams and solitons
opens completely new perspectives of research. In the past
decade, Airy beams in different NL media were widely
studied, such as Kerr NL dielectrics [12–14], photorefrac-
tive media [15], non-local NL media [16,17], and quadratic
media [12,18]. Because of the existence of nonlinearities,
self-trapped beams can be realized with Airy-like beams/
pulses [19,20] and self-accelerating solitary-like waves can
also be found [13–15,18,21,22]. References [12–22] dis-
cussed non-diffracting beams all in uniform media. By
considering modulated refractive index potentials (i.e., the
media are no longer uniform) a new degree of freedom is
added to the system which brings about exciting new ef-
fects of the Airy beam propagation, which has already
been considered in a few theoretical and experimental
studies. Efremidis studied the propagation of Airy beams
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in transversely linear index potentials [23]. In inhomo-
geneous media with a linear gradient index distribution,
Moya-Cessa et al. demonstrated that an Airy beam prop-
agates in a straight line [24]. Makris et al. studied
non-diffracting accelerating paraxial optical beams in pe-
riodic potentials [25]. Hu et al. studied the behavior of
Airy beams propagating from a NL medium to a linear
medium [26]. Moreover, Dragana M. Jović et al. ana-
lyzed the influence of an optically induced photonic lat-
tice on the acceleration of Airy beams [27,28]. However,
the propagation dynamics of Airy beams in parity-time
(PT)-symmetric potentials has thus far not been reported
to our knowledge.

In optics, PT-symmetric potentials can be designed
by introducing a complex refractive-index distribution
n(x) = nR(x) + inI(x), where nR(x) = nR(−x), nI(x) =
−nI(−x), and x is the normalized transverse coordi-
nate [29,30]. When nonlinearity is introduced, a novel
class of NL self-trapped modes was found, and the inter-
play between the Kerr nonlinearity and the PT thresh-
old was analyzed by Musslimani and co-workers [31].
Christodoulides’ group presented closed-form solutions
to a certain class of one- and two-dimensional NL
Schrödinger equations involving potentials with broken
and unbroken PT symmetry [32]. We also showed that
defocusing Kerr media with PT-symmetric potentials can
support one- and two-dimensional bright spatial soli-
tons [29].

Moreover, the interactions between Airy pulse and tem-
poral solitons at the same center wavelength [33] have been
studied. The interaction of an accelerating Airy beam
and a solitary wave has also been investigated for inte-
grable and non-integrable equations governing NL optical
propagation [34]. In the generic three-wave system, May-
teevarunyoo and Malomed have considered the collisions
of truncated Airy waves and three-wave solitons [35]. Up
to now, the interactions between an Airy beam and sta-
ble spatial beams in self-defocusing media with PT lattices
have not been mentioned. When the two beams are placed
in proximity to each other, with the Airy acceleration
direction towards the soliton, interesting questions arise.
For instance, will the soliton behave as an impenetrable
barrier? Can the Airy probe control the soliton propa-
gation parameters? How do the corresponding parame-
ters affect the interaction of the beams? These questions
are addressed in this paper. Specifically, we investigate
the dynamics of two one-dimensional interacting beams
along the propagation direction. We discuss the influence
of different physical parameters on the beam interaction,
including the initial spatial beam separation, phase differ-
ence, and amplitude ratio between the beams, the modu-
lation depth and the width of PT potentials.

The theoretical model. – In a Kerr self-defocusing
medium with PT-symmetric potentials, the scaled equa-
tion for the propagation of a slowly varying envelope
q(x, z) of the optical electric field in one transverse

dimension in the paraxial approximation is the normal-
ized NL Schrödinger equation (NLSE) [31,32],

i
∂q

∂z
+

1
2

∂2q

∂x2
+ R(x)q + γ|q|2q = 0, (1)

where z is the propagation distance which corresponds
to the real distance Zr = zkw2

0, k = 2πn0/λ, λ is
the beam wavelength in the vacuum, w0 is the input
beam width, n0 is the linear refractive index of media.
R(x) = V (x) + iW (x), and V (x) = V0 sec h2(x/d) and
W (x) = W0 sec h(x/d) tanh(x/d) are the real and imagi-
nary components of the complex PT-symmetric potential,
respectively. V0 and W0 are the amplitudes of the real and
imaginary parts. d denotes the width of PT potentials.

Obviously, when R = 0 and γ = 0, one of the ac-
celerating solutions of eq. (1) is the well-known Airy
function q(x, z) = Ai(x − z2/4) exp[i(6xz − z3)/12] [2].
The ideal Airy beam does not exist in reality for
its infinite energy. To make it finite-energy, an in-
put Airy beam is defined by q(x, 0) = Ai(x) exp(αx),
where α ≥ 0 is an arbitrary real decay parameter.
If we assume γ = −1, the NLSE supports a PT
soliton solution which can be described as q(x, z) =
qs0 sec h(x) exp(iρ arctan(sinh(x))) exp(iβz) [32], where
ρ = W0/3, qs0 =

√
V0 − w2

0/9 − 2, and the propagation
constant of the soliton β = 1. To investigate the interac-
tion of an Airy beam and a PT soliton, we take the initial
beam as a superposition of two beams

q(x, 0) = qs0 sec h(x) exp(iρ arctan(sinh(x)))
+ qA0Ai(x − D) exp(α(x − D)) exp(iθ), (2)

where qA0 stands for the amplitude of the Airy beam. D is
the initial Airy beam position with respect to the soliton
(launched at z = 0), and θ controls the phase shift. When
we vary these parameters, the soliton propagation must be
affected. We demonstrate these interactions through nu-
merical simulations using the Split Step Fourier Method.
In our simulations, we choose a small truncation coefficient
α = 0.03, which guarantees that all the Airy beams have
the same energy for a given qA0 value and only a small
variation in peak intensity at the point of collision [33].

Numerical results of Airy beams in PT poten-
tials. – Before discussing Airy-soliton interactions, we
only consider the propagation of Airy beams in a defo-
cusing nonlinear medium (γ = −1) with PT potentials.
So, the input beam is q(x, 0) = qA0Ai(x) exp(αx). We can
see that Airy beams are divided into three parts due to
the existence of PT potentials from figs. 1 and 2. One
part may be soliton-like with small oscillations; When the
solitary wave is hit by an Airy beam, it oscillates in both
amplitude and position. The position oscillations are due
to momentum exchange. The Airy beam gives the soli-
tary wave momentum, but the potential traps the solitary
wave, so it does not propagate away, but oscillates in the
potential. The amplitude oscillations are a standard soli-
tary wave behavior. If an NLS solitary wave is perturbed,
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Fig. 1: (Color online) Intensity plots for the propagation of an
Airy beam at (a) qA0 = 0.5, d = 30 μm, (b) qA0 = 2, d = 30 μm
and (c) qA0 = 2, d = 10 μm. Ppeak and Weff as a function of
the propagation distance z for different qA0 (d) and d (e) with
V0 = 3 and W0 = 0.3.
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Fig. 2: (Color online) Intensity plots for the propagation of a
Airy beam at (a) V0 = 3, (b) V0 = 4, and (c) V0 = 6 with
W0 = 0.3 and (d) W0 = 1, (e) W0 = 1.8, and (f) W0 = 2.05
with V0 = 3. (g) The effective beam width Weff via the prop-
agation distance z for W0 = 0.3. (h) Weff via z with V0 = 3.
The other parameters are qA0 = 2 and d = 30 μm.

it evolves to a steady state by oscillating in amplitude
and width, shedding dispersive radiation in the process.
The other part remains self-accelerating as the input Airy
beam; The last part may be reflected waves. Here, we
only pay attention to the first part. The influence of the
amplitude of Airy beams and the width of PT potentials
on their propagation properties is shown in fig. 1. The am-
plitude of the beam amplitude oscillation decreases with
increasing qA0, which can be seen from fig. 1(a) and (b).
This can be illustrated by using Newtonian mechanics.
qA0 is equivalent to the beam mass. When an Airy beam
interacts with a PT potential, the amplitude of the beam
amplitude oscillation must decrease with increasing qA0

for the same acting force of the PT potential. However,
not only the peak intensity of the beam Ppeak but also
the oscillation amplitude of Ppeak increases with qA0, see
fig. 1(d). This oscillation belongs to a position oscillation.
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Fig. 3: (Color online) Airy-soliton interactions with an initial
separation of (a) D = −5, (b) D = −3, and (c) D = 0 with
θ = 0 and (d) θ = π/2, (e) θ = π, and (f) θ = 3π/2 with
D = −5. (g) The collision distance Zc as a function of pa-
rameter D. (h) The mean soliton intensity Pmean via θ for
different D. The other parameters are qA0 = 1, d = 30 μm,
V0 = 3, and W0 = 0.3.

In addition, we also see that the oscillation amplitude of
Ppeak gradually becomes smaller during propagation be-
cause of the existence of beam decay. One can also find
the effect of the width of PT potentials d on Airy beams.
When d is smaller (d = 10μm), the soliton may form when
z > 8 (fig. 1(c)). While d increases (d = 30μm), the beam
oscillations (the soliton-like dynamics) shown in fig. 1(b)
may appear. Figure 1(e) shows that the effective beam
width Weff =

∫ +∞
−∞ |q|2/e2 varies with z for different d,

where e is an exponential. We can find that Weff is al-
most constant for d = 10μm, but it is oscillating when
d = 30μm and d = 50μm. Moreover, the amplitude of
oscillation and Weff increase with the width of PT poten-
tials d. That is to say, as d is smaller, the Airy beam
will be much more tightly localized because the binding
force of PT potentials becomes stronger. Figure 2 illus-
trates how the amplitudes of the real and imaginary parts
of PT potentials affect the beam propagation properties.
Firstly, one can say that the amplitude of the oscillations
of soliton-like largens and the oscillation period shortens
from figs. 2(a)–(c) and fig. 2(g) when V0 increases. Sec-
ondly, when we change W0, the properties of the beams
are interesting. At W0 = 1, the soliton-like may appear
in fig. 2(d); At W0 = 1.8, the breathers-like may take
shape in fig. 2(e); At W0 = 2.05, the beam may diffract
in fig. 2(f). These results can be verified in fig. 2(h). The
solitary wave solution [32] only exists for a fixed W0 for a
given amplitude qs0 related to W0. The solitary wave is
just killed by large loss when W0 is larger, so the beam
diffracts.

Numerical results of Airy-soliton interactions in
PT potentials. – For Airy-soliton interactions, the influ-
ence of the varied beam parameters on the beam propa-
gation is discussed firstly. Figure 3 shows that two beams
launch at different space separations D or different phase
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Fig. 4: (Color online) Intensity plots for the propagation of an
Airy beam at (a) V0 = 2.5, (b) V0 = 3, and (c) V0 = 4 with
W0 = 0.3 and (d) W0 = 0.5, (e) W0 = 1, and (f) W0 = 2 for
V0 = 3. (g) The effective beam width Weff via the propaga-
tion distance z for V0 = 2.5 (solid blue line), V0 = 3 (dash-
dotted red line), and V0 = 4 (dashed black line) at W0 = 0.3.
(h) Weff via z for W0 = 0.5 (solid blue line), W0 = 1 (dash-
dotted red line), and W0 = 2 (dashed black line) at V0 = 3.
The other parameters are qA0 = 0.5, θ = 0, D = −5, and
d = 30 μm.

shifts θ for qA0 = 1, d = 30, V0 = 3, and W0 = 0.3.
The propagating Airy beam decelerates to collide with the
trailing soliton, so the interaction can be separated into
two regimes of interest: the primary collision region be-
tween two beams (occurring at approximately 2 < z < 8,
for D = −5 in fig. 3(a)), and a relaxation region accom-
panied by continuous interaction with the dispersed Airy
tail (occurring at z > 8). These are responsible for the
different parameters such as space separation, phase shift,
PT potential parameters, and soliton amplitude. During
the primary collision, one cannot distinguish two beams
which lose their identities due to interference throughout
the collision region (2 < z < 8). However, as the Airy
beam further moves towards later positions two beams
reform and emerge having perturbed parameters. In ad-
dition, the Airy beam never completely crosses over the
soliton, so the Airy-soliton interactions are classified as
incomplete collisions [33]. From figs. 3(a)–(c), we can say
that the collision distance Zc lessens with D decreasing.
Zc is given by [33]

Zc = 2
√

Zs − D + Zpeak, (3)

where Zs is the soliton input position (in our case Zs = 0)
and Zpeak is the offset of the main Airy peak with re-
spect to the space separation D. Zpeak is numerically
calculated for a given truncation and space separation.
For example, Zpeak = 5 for α = 0.03 and D = −5, so
Zc = 6.32. Figure 3(g) verifies the relation of Zc and
D according to eq. (3). By establishing soliton power
and background power from the maximum and minimum
interference values, we can calculate the mean soliton

power Pmean far from collision. Pmean is charted for differ-
ent initial Airy-soliton phases and separations at qA0 = 1,
d = 30, V0 = 3, and W0 = 0.3 in fig. 3(h). It is obvious
that Pmean increases with D. One can also find sinusoidal
dependence on the initial Airy phase for all separations,
illustrating an energy transfer between the beams during
the primary collision.

Next, we change the modulation amplitudes V0 and W0

of PT potentials to find the effect of V0 and W0 on Airy-
soliton interactions shown in fig. 4. From figs. 4(a)–(c)
and (g), we find the behavior of soliton-like in the relax-
ation regions for different V0. The beam width of soliton-
like Weff increases with increasing V0. Figures 4(d)–(f)
illustrate the change of the beam propagation with W0.
The behaviors are similar to fig. 2(h) in the relaxation
regions which can be seen in fig. 4(h) for different W0,
which include soliton-like (W0 = 0.5) and breathers-like
(W0 = 2).

Conclusion. – To conclude, we have investigated
Airy-soliton interactions in self-defocusing nonlinear me-
dia with PT potentials by using the numerical simulations
with the split-step Fourier method. If we only consider
the propagation of Airy beams in a defocusing nonlinear
medium, the propagation dynamics can be described
and divided into three parts due to the existence of PT
potentials: one part is soliton-like propagation with small
oscillations; the other part remains self-accelerating as
the input Airy beam; the last part may be associated
with reflected waves. The amplitude and period of the
oscillations may be affected by input beam amplitude and
PT potential parameters. We find that soliton-like and
breather-like dynamics can be produced during propaga-
tion. For Airy-soliton interactions, the propagating Airy
beam can decelerate to collide with the trailing soliton,
so the interaction can be separated into two regimes of
interest: the primary collision region between the beams
and a relaxation region accompanied by continuous
interaction with the dispersed Airy tail. In the relaxation
region, the behaviors of soliton-like and breather-like
dynamics can also be observed. The beam width and
mean power are influenced by space separation, phase
shift and modulation depth of PT potentials. More
interestingly, the collision distance becomes smaller when
spatial separation between two beams is smaller, and the
mean soliton-like power exhibits sinusoidal dependence
on the initial Airy phase. The numerical simulations
presented in this paper motivate an experimental imple-
mentation of interactions of Airy beams and solitons in
PT potentials which can be realized through a judicious
inclusion of index guiding and gain/loss regions in optics
[29,36]. Controlling the propagation behavior of light with
light itself is the key requirement to realize new all-optical
guiding and switching architectures, so these experiments,
which is to tailor the transverse acceleration of optical
Airy beams using PT potentials and solitary waves, may
enable new configurations for all-optical interconnections.
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Also other classes of self-accelerated optical beams can
be controlled using the presented ideas and methods.
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