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Abstract: We report the first experimental demonstration of localized
flat-band states in optically induced Kagome photonic lattices. Such lattices
exhibit a unique band structure with the lowest band being completely
flat (diffractionless) in the tight-binding approximation. By taking the
advantage of linear superposition of the flat-band eigenmodes of the
Kagome lattices, we demonstrate a high-fidelity transmission of complex
patterns in such two-dimensional pyrochlore-like photonic structures. Our
numerical simulations find good agreement with experimental observations,
upholding the belief that flat-band lattices can support distortion-free image
transmission.
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1. Introduction

Nondestructive transmission of optical information has always been a challenging subject of re-
search. Over the past several years, evanescently coupled waveguide arrays, or better known as
photonic lattices, have provided an extremely effective platform for studying many intriguing
fundamental phenomena ranging from discrete solitons to dynamical localization and Anderson
localization in disordered lattices [1–6]. They have also been explored for applications such as
image transmission in a variety of optical settings [7–11]. In particular, recent developments in
the so-called flat-band [12] lattices have opened up new avenues for manipulation of light and
controlled image transmission. For instance, Lieb photonic lattices were realized via the fem-
tosecond laser-writing technique as well as the optical induction technique, allowing for direct
observations of diffractionless flat-band states [13–15]. In these recent experimental demon-
strations, the Lieb photonic lattices remain perfectly periodic without any modulation, yet they
are able to support localized states due to the principle of phase cancellation which is a common
feature of flat-band eigenstates [12].

A Kagome lattice is a triangular depleted lattice that is essentially a two-dimensional (2D)
counterpart of the “pyrochlore” structure, which has been historically studied as a model for
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geometrically frustrated magnetism and for presenting the flat bands [16, 17]. For decades in
condensed matter physics, Kagome lattices have been the subject mainly for theoretical study
due to their intriguing properties associated with spin frustration. But technology advancement
has turned them from theory into reality, including for example the realization of nanoscale
Kagome lattices by self-assembling atoms and molecules [18] and metallic Kagome lattices
by novel design and fabrication of metamaterials [19]. Several schemes were theoretically pro-
posed to create flat bands in the 2D Kagome lattice, utilizing metallo-photonic waveguides [20]
or using photonic crystal structures [21]. In optics, photonic Kagome lattices have also been
established using the technique of optical induction [22, 23]. In fact, recently it has been pro-
posed theoretically that the flat-band system in a Kagome photonic lattice could be used for
diffraction-free image transmission [24]. However, up to now, undistorted propagation of flat-
band states in Kagome photonic lattices has not been accomplished experimentally to the best
of our knowledge.

In this paper, we report the first experimental demonstration of a localized flat-band state in
Kagome photonic lattices. The Kagome lattices are “fabricated” in a bulk self-focusing nonlin-
ear crystal by a simple yet effective optical induction technique. Such induction technique is
based on optical Fourier transformation through an amplitude mask superimposed with a phase
mask, without the need of using a spatial light modulator (SLM) for engineering the lattice-
inducing beam. We show that optically induced Kagome lattices offer a convenient platform for
probing the flat-band states. Furthermore, we realize a high-fidelity bound-state transmission in
such 2D pyrochlore-like photonic structures by judiciously exciting a superposition of flat-band
eigenmodes of the Kagome lattices. Comparing with our previous work on Lieb lattices [15],
which are more feasible for square or L-shaped image transmission, in Kagome lattices the flat
band is in the “ground-state”, and their localized mode structures are more suitable for ring or
necklace-shaped image transmission.

2. Theoretical model and linear spectrum

The linear propagation of a light beam in photonic lattices is well described by the following
Schrödinger-like equation under paraxial approximation [1–3]:

i
∂ψ (x,y,z)

∂ z
=− 1

2k1
�2 ψ (x,y,z)− k0Δn(x,y)ψ (x,y,z) (1)

where (x,y) are the transverse coordinates, z represents the longitudinal propagation direction,
and ψ corresponds the electric field envelop of the probe beam. �2 is the 2D transverse Lapla-
cian operator. n0 is the refractive index of the nonlinear medium, k0 = 2π/λ0 is the wave number
in the vacuum, and k1 = n0k0. The refractive index change is Δn(x,y) = n3

0γ33E0/ [2(1+ Il)],
which represents the refractive index changes corresponding to the 2D Kagome photonic lat-
tices. Il is the Kagome intensity pattern, n0 = 2.35, the electro-optic coefficient γ33 = 280 pm/V,
and the bias field E0 = 1 kV/cm.

Assuming that only the hopping between the nearest-neighbor lattice sites is considered, we
can use the tight-binding model to solve Eq. (1). Here we consider the 2D Kagome photonic
lattice shown in Fig. 1(a) as the index changes (potential) in Eq. (1). Figure 1(b) shows a 3D
plot of the band structure in k-space. In this case, the linear spectrum exhibits three bands: two
dispersive and one nondispersive (flat) band in a unitary cell of the Kagome lattice [dashed tri-
angle of Fig. 1(a)]. Similar to honeycomb lattices [25,26], the curved bands are featured by the
linear dispersion relation in the vicinity of Dirac points (six K points), where the Dirac cones
from the upper and lower bands are integrated. The bottom of the lower band touches the third
(flat) band at Γ point of the first Brillouin zone (BZ). As seen from the Fig. 1(b), the third band
is a completely degenerated flat band. The presence of the flat band which comes from local in-
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Fig. 1. (a) A schematic diagram of 2D Kagome lattice structure with each unit cell con-
sisting of three lattice sites marked as A, B, C. (b) Numerically calculated band structure
under the tight-binding approximation, showing the first three bands with the flat band at
the bottom. (c) A fundamental (ring) mode as the flat-band localized degenerate eignstate
is denoted by black and white circles, all possessing equal intensity but alternating opposite
phases.

terference effect is the significant feature in this band structure. The localized eigenmodes in the
flat-band are called “ring” modes with equal amplitudes but alternating opposite phases [24],
which are marked as black and white circles [see the Fig. 1(c)]. Different from modes in normal
Bloch bands, the flat-band linear wave functions (flat-band states) are not completely extended
due to the destructive interference. The purpose of this paper is to experimentally demonstrate
the predicted localized flat-band modes in Kagome photonic lattices, and to explore the possi-
bility to use superposition of these modes for distortion-free image transmission through bulk
media.

3. Optical induction of Kagome photonic lattices

First, we fabricate the Kagome photonic lattices using the well-established optical induction
technique [1, 2]. The experimental setup used for lattice induction and excitation of the flat-
band states is shown in Fig. 2(a). A laser beam operating at 532nm is divided into three paths
(as labeled in the figure): the first path is the lattice-forming beam, the second path is the probe
beam, and the third path provides a reference beam for interference measurement as needed.
Lattice-forming beam [Fig. 2(a), the line of the red arrow 1] is ordinarily polarized and is
partially spatially incoherent after passing through a rotating diffuser. To generate the Kagome
lattices intensity pattern, this partially incoherent beam is further modulated by a specially
designed amplitude mask and a spectral filter (phase mask 1) positioned at the Fourier plane
[23]. The phase mask 1 (PM1) is used to spatially filter the light and modulate the phase of
spatial frequency spectrum in the front focal plane of the transform lens. The PM1 consists
of six holes, three of them covered with tilted glass plates to adjust the relative phase. The
diameter of each hole is 0.8 mm and the spacing between adjacent holes is 4.0 mm. When
the phase difference of the adjacent spatial frequency spectrum is 2π/3, the Kagome lattice is
established. This combined modulation leads to a Kagome intensity pattern on the front facet
of the photorefractive crystal (SBN: 5 mm×10 mm×5 mm), which leads to a Kagome index
lattice when the crystal is biased by an electric field that provides a self-focusing nonlinearity.
The technique using partially incoherent light beam for optical induction of photonic lattices
is well established in literature, as used for earlier experiments on discrete solitons [27] and
for recent demonstrations of photonic graphene lattices and Kagome lattices [23, 26]. Thus,
in this work, we use the technique to create a Kagome lattice which can remain stable and
nearly invariant along the direction of propagation throughout the nonlinear crystal for testing
the flat-band states, but our focus is not on lattice induction.
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Fig. 2. (a) Experimental setup: (P)BS: (polarizing) beam splitter; ID: iris diaphragm; M:
mirror; SBN: strontium barium niobate; SLM: phase-only spatial light modulator; AM: am-
plitude mask; PM1 (phase mask 1): phase modulation to lattice-forming beam at Fourier
plane; PM2 (phase mask 2): phase modulation to probe beam encoded onto SLM. Red
arrows 1, 2, 3 show, respectively, the lattice-forming beam, the probe beam, and the in-
terfering beam for measuring the output phase structure. (b) Experimentally established
Kagome lattice with lattice spacing of 28 µm. (c) Output of the guided intensity pattern of
a quasi-plane wave by the corresponding Kagome structured waveguide arrays.

In the second path (the line of the red arrow 2), the probe beam is extraordinarily polar-
ized. In order to excite a flat-band state, we use a phase-only spatial light modulator (SLM)
to modulate the phase of the probe beam. We simultaneously encode the amplitude and the
phase information onto SLM by designing a hologram (phase mask 2) consisting several phase
gratings arranged in a hexagonal structure as shown in the bottom-left insert of Fig. 2(a). When
the hologram is encoded onto the SLM, a broad extraordinarily polarized quasi-plane wave is
sent to the SLM, and then first order of the diffracted light is filtered through an adjustable di-
aphragm. With this method, we can obtain a probe beam with a necklace-like intensity pattern
with a desired phase structure as needed for the “ring” mode shown in Fig. 1(c). After modu-
lating by the SLM, the probe beam is divided into two parts by a Mach-Zehnder interferometer
with a mechanical shutter inserted in one arm. When the shutter is closed, the probe beam only
excites one flat-band eigenmode (i.e, a localized “ring” mode). However, when the shutter is
open, the two outputs from the interferometer can be superimposed to generate a complex pat-
tern (an elongated necklace) to excite two “ring” modes as a flat-band bound state. The size of
each intensity spot of the probe beam at input is controlled by the imaging lens, and the spacing
between adjacent spots is controlled via adjusting the phase gratings. Meanwhile, the phase
structure of the probe beam can be controlled via fine-tuning the relative localizations of the
six gratings. For example, when the stripes of the nearest neighboring gratings are staggered
arranged as shown in PM2, we can get a probe beam with an out-of phase structure, whereas
unstaggered grating arrangement leads to in-phase condition of the probe beam. In addition, the
input/output intensity profiles of the probe beams and the Kagome lattices are monitored with
a CCD camera. To examine the phase structure of different profiles, we use the third path beam
as a tilted reference quasi-plane wave to obtain interferograms.
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The crystal used in our experiments is a 10-mm long SBN: 60 under a positive bias field of
1.6 KV/cm. The orientation of the crystal’s symmetry c-axis is at horizontal direction, and the
applied electric field is along the crystalline c-axis. Typical experimental results for an optically
induced Kagome lattice of 28 µm are shown in Figs. 2(b) and 2(c). Figure 2(b) depicts the
output intensity distribution for the induced Kagome lattice at the back face of the crystal. In
order to test the Kagome structured waveguide, a broad uniform beam (quasi-plane wave) is
used as a probe to the lattice, and its output after propagating through the lattice is shown in
Fig. 2(c), exhibiting clearly a Kagome structure due to linear guidance by the lattice-induced
waveguide arrays. In our experiments, the ordinarily-polarized lattice-inducing beam would
experience only weak nonlinear index change, so the anisotropic photorefractive nonlinearity
does not play a significant role. On the other hand, the diffraction along the two orthogonal
principal axes is slightly different due to inherent orientation anisotropy in the Kagome lattices.
So we make the direction with slightly stronger diffraction along the crystalline c-axis (i.e.,
the direction with stronger nonlinearity) in our experiments. Using this method, our induced
Kagome lattices are pretty uniform in both directions and are not afflicted by the anisotropic
nonlinearity, as seen in Fig. 2(c) for the output intensity distribution of the guided wave pattern.

Fig. 3. Experimental demonstration of localized flat-band states and their superposition
propagating through the Kagome lattice. From left to right, shown are for probing with
a single Gaussian beam, six-spot (necklace) beam with equal phase, six-spot beam with
opposite phase (as a flat-band state), and an elongated necklace beam (as superposition of
ring modes). (a)–(d) Input beam patterns, (e)–(h) linear output patterns without the Kagome
lattice, and (i)–(l) linear output patterns exiting the lattice. Upper insets show the combined
input intensity patterns when the probe beam is launched into the lattice, and lower insets
(zoomed in) show the interferograms of (b) and (c) with a tilted quasi-plane wave to show
the input phase structure.
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4. Demonstration of localized flat-band states in Kagome photonic lattices

Next, we demonstrate experimentally non-diffracting propagation of flat-band modes and their
superposition in the Kagome lattice. Typical experimental results are shown in Fig. 3. The first
row shows the intensity distribution of the probe beams under different settings [Figs. 3(a)–
3(d)]. For comparison, the output intensity distributions for different input as probe all display
linear diffraction without the induced lattice [Figs. 3(e)–3(h)]. When the desired input modes
are launched into the lattice, localized output is observed after propagating 10 mm through
the lattice. The localization is very sensitive to the modes excited at the input [Figs. 3(i)–3(l)],
in contradistinction to that from disorder-induced localization. As expected, a single Gaussian
beam experiences discrete diffraction in the lattice [Fig. 3(i)]. A six-spot necklace pattern can-
not be localized if they are all in phase [Fig. 3(j)]. To excite the flat-band states, the spots in
the necklace are made with equal amplitude but alternating opposite phase [Fig. 3(c)], thus a
localized “ring” mode is excited [Fig. 3(k)]. Lower insets in Figs. 3(b) and 3(c) show the in-
terferograms of the input probe beams with a tilted quasi-plane wave, where we can clearly
see the in-phase and out-of-phase relation between neighboring intensity spots of the probe
beam through the interference fringes. More importantly, the interferogram [inset in Fig. 3(k)]
taken at the output from the lattice reveals that the out-of-phase structure of the localized “ring”
modes is preserved during propagation. Of course, these phase information can be better re-
trieved from the other technique such as that used in Ref. [28]. Clearly, the difference in per-
formance between Figs. 3(j) and 3(k) emphasizes the relevance of the phase structure for the
excitation of flat-band states. Based on the invariability of any linear combination of eigen-
modes in the direction of propagation, we constitute a simple bound state [Fig. 3(d)] by the
linear combination of two flat-band modes. Again, the nondestructive output pattern [Fig. 3(l)]
is observed, indicating the feasibility for distortion-free image transmission based on arbitrary
superposition of flat-band modes.

As compared with fs laser-written lattices [13, 14], the optically induced lattices have less
propagation length due to the limitation of crystal length of 10 mm. It should be pointed that
the propagation length in our experiment is about 1.2 coupling length (i.e., more than one
coupling length). Furthermore, as shown in many prior experiments [2, 26], optically induced
lattices (even only 10mm long) can allow for strong coupling between lattice waveguide chan-
nels. One can also see discrete diffraction from Fig. 3(i), indicating the coupling among waveg-
uides. Thus, the localized patterns observed in Fig. 3 indeed arise from formation of flat-band
modes rather than simple isolated wave-guiding. From numerical simulation, we found that the
nearest-neighbor coupling constant is about 0.184 mm−1, and the next nearest-neighbor cou-
pling constant is about 0.014 mm−1. Thus, the next-nearest-neighbor coupling is an order of
magnitude smaller than the nearest-neighbor coupling, insignificant in our 10 mm-long lattices.

To further corroborate these experimental observations, we numerically solved the equation
(1) by using the beam propagation method. The parameters are similar to those used in our
experiments. λ = 532 nm, the lattice spacing D = 28µm, n0 = 2.35, the index change associ-
ated with the induced Kagome lattices Δn = 1.8×10−4, and the propagation length L = 10mm
corresponding to the experimental results. Typical results are shown in Fig. 4, where it can be
clearly seen that our simulation results agree well with experimental results shown in Fig. 3.
The first panel reveals the input probe beams, and the corresponding output patterns with-
out lattices are shown in the middle panels. It can be seen that the input beams exhibit linear
diffraction patterns without lattices. However, when the lattices are introduced, localization
of the necklace-like beams is achieved as shown in the bottom panels. More importantly, the
difference between distorted [Fig. 4(j)] and undistorted [Fig. 4(k)] is evident. This is in good
agreement with previously performed numerical simulation [24]. In addition, we performed a
series of simulations for different lattice constants and found that the localization was not ob-
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Fig. 4. Numerical simulation of localized flat-band states and their superposition through
the Kagome lattices corresponding to Fig. 3. Other description is the same as for Fig. 3.
λ = 532 nm, the lattice spacing D = 28µm, the index change associated with the induced
Kagome lattices Δn = 1.8×10−4, and the propagation length L = 10 mm corresponding to
the experimental results.

served after 10 mm propagation with the lattice spacing D ≤ 22µm. This is because, when the
lattice spacing is too small, strong coupling occurs even between the next-nearest neighbors,
so the flat band can no longer preserve. Experimentally, we cannot achieve longer propagation
distances due to the limitation of the crystal length. However, we have performed simulations
to a longer propagation distance (60 mm), and we found that the diverse linear combinations
of eigenmodes show little diffraction while propagating through the induced Kagome lattice
[Fig. 5(a)].

In our experiments, weak disorder of the Kagome lattice (diagonal disorder) is present due
to non-uniformity of light spot. Furthermore, we have performed linear-evolution simulations
for flat-band mode transmission in Kagome lattices under random-noise perturbations. Figure 5
shows the numerical results. Upper row shows the output patterns of a single flat-band mode ex-
cited in the Kagome lattices under different random-noise perturbations. Lower row shows the
corresponding linear-evolution simulations of long distance propagation. For a long distance
propagation of 60 mm (about six coupling length), we have found that a flat-band “ring” state
still remains robust and does not break up in the Kagome lattices with the random noise pertur-
bations d ≤4%, as shown in Figs. 5(a) and 5(b). However, with 6% random noise perturbations,
we can see some weak diffraction from the excited sites in Fig. 5(c). When the random noise
perturbations reach to 10%, stronger diffraction can be seen and the “ring” mode is severely
distorted [Fig. 5(d)]. Finally, we want to mention that in our simulation, we did not include the
effect of anisotropic nonlinearity inherent in the biased photorefractive crystal. From the output
lattice pattern [Fig. 2c] and also the discrete diffraction pattern of a Gaussian probe beam, we
can see that, at the bias field we used, the anisotropic nonlinearity does not play an appreciable
role here in deforming the Kagome lattice or its flat-band structure.
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Fig. 5. Numerical simulation of long distance propagation (L=60mm) of localized flat-band
states in Kagome lattices under random-noise perturbations. (a) random-noise perturbations
d = 0%; (b) d = 4%; (c) d = 6%; (d) d = 10%. Upper row shows the output profiles of a
single flat-band mode. Lower row shows the “sideview” evolution for mode profiles taken
along the dashed line in top panels.

5. Conclusion

In conclusion, we have “fabricated” 2D Kagome photonic lattices in a bulk nonlinear crys-
tal by optical induction and demonstrated experimentally the excitation of a flat-band state.
Moreover, we have observed diffraction-free propagation of a complex pattern formed due to a
superposition of the flat-band states in such Kagome lattices. These results further support the
theoretical prediction of image transmission based on flat-band states in Kagome lattices [24].
Our work may provide inspiration for developing alternative light-trapping and image trans-
mission schemes in structured photonic materials without engineered disorder or nonlinearity.
In addition, one can envisage the possibility for experimental demonstration of predicted novel
phenomena such as discrete flat-band solitons and PT-symmetric phase in Kagome photonic lat-
tices [29, 30], Aharonov-Bohm photonic caging with the implementation of a synthetic gauge
field [31].
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