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We study nondiffracting accelerating paraxial optical beams in periodic potentials, in both the linear and the
nonlinear domains. In particular, we show that only a unique class of z-dependent lattices can support a true
accelerating diffractionless beam. Accelerating lattice solitons, autofocusing beams and accelerating bullets in
optical lattices are systematically examined. © 2014 Optical Society of America
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In the last few decades, the physics of diffractionless
optical beams [1–4] has attracted considerable attention
because of their intriguing physical properties and their
potential applications. More recently, a new class of dif-
fraction-free beams was introduced: Airy beams [5,6].
Such beams are unique solutions of the paraxial wave
equation in one-dimensional homogeneous media. Not
only are they diffraction-free, but more interestingly they
self-accelerate (spatially bend) even in free space. Unlike
other solutions that propagate on a straight line (e.g.,
Bessel beams), they follow a parabolic trajectory while
maintaining their shape. Naturally, one could ask if such
beams can also exist in inhomogeneous media and, in
particular in periodic potentials [7–10]. Indeed, it has
been shown theoretically [7] and experimentally demon-
strated [8] that the Wannier–Stark (WS) beams can accel-
erate in propagation-invariant optical lattices (i.e., when
the potential does not depend on the evolution coordi-
nate). Additionally, an important development occurred
last year, with the discovery of accelerating nondiffract-
ing solutions of the full Maxwell’s equations [11], which
were subsequently demonstrated experimentally [12],
with beams following circular [12,13] and elliptic [14] tra-
jectories. Recently, nonparaxial accelerating beams were
also found inside photonic crystals [15]. However, it is
important to note that even though the families of such
beams in periodic structures [7–10,15] can experience
self-acceleration, they are not truly diffraction-free;
rather, the shapes of these beams self-reconstruct while
moving through the periodic potential in a bending
trajectory. An interesting question thus arises: are self-
accelerating and true diffraction-free optical beams pos-
sible in general inhomogeneous media? In other words,
what is the analog of Airy beams when a periodic poten-
tial is involved? Can one extend these ideas to the non-
linear domain, to obtain accelerating lattice solitons? We
investigate these issues in this Letter.

To do so, we consider the nonlinear normalized
Schrödinger equation, that governs the paraxial
nonlinear wave dynamics in the presence of an optical
potential V�x; z�, which is

iUz � Uxx � V�x; z�U � γjU j2U � 0; (1)

whereU�x; z� is the electric field envelope, z is the propa-
gation distance, x is the transverse coordinate axis, and γ
is the Kerr nonlinear coefficient. The subscripts in Eq. (1)
denote the partial derivatives with respect to z and x. To
address our question, we follow an analytical method for
deriving any self-accelerating and diffractionless solution
of the paraxial equation of diffraction in both linear and
nonlinear regimes. We apply the moving frame approach
[16] where in the accelerating-moving coordinate system
�x̄; z�, the new coordinate x̄ is defined as x̄≡ x − F�z�,
with F�z� being the unknown trajectory of the diffrac-
tionless beam. In particular, Eq. (1) can be written in
the new coordinate system as: iUz − iF 0�z�Ux̄ � Ux̄ x̄�
V�x̄; z�U � γjUj2U � 0. The F 0�z� stands for the deriva-
tive of the trajectory with respect to z. By using the an-
satz U�x̄; z� � ϕ�x̄�eiθ�x̄;z� and assuming real optical
potential V�x̄; z�we obtain a set of two coupled nonlinear
partial differential equations:

ϕx̄ x̄ � �F 0�z�θx̄ − θz − θ2x̄ � V�x̄; z��ϕ� γϕ3 � 0; (2a)

�2θx̄ − F 0�z��ϕx̄ � θx̄ x̄ϕ � 0: (2b)

Close inspection of Eqs. (2) reveals that, for our solution
to be diffractionless and accelerating, two conditions
must be satisfied:

F 0�z�θx̄ − θz − θ2x̄ � V�x̄; z� � function of x̄ only; (3a)
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θx̄ � 1
2
F 0�z� � function of z only: (3b)

Equation (3a) assures that the beam is diffraction-free
since the potential term in Eq. (2a) will be a function
of x̄ and therefore the beam is stationary in the moving
frame of coordinates. Equation (3b) can be rigorously de-
rived by integrating Eq. (2b). In particular, by multiplying
Eq. (2b) with ϕ we get �∂∕∂x̄��θx̄ϕ2

− �1∕2�F 0�z�ϕ2� � 0.
Integration of this equation together with the physically
reasonable boundary condition limx̄→�∞ϕ�x̄� � 0 leads
us directly to Eq. (3b). Next we proceed to solve Eq. (2a)
based on the conditions of Eqs. (3a) and (3b). Integration
of Eq. (3b) yields θ � �1∕2�F 0�z�x̄� c1�z�. The last for-
mula can be then used to obtain the derivative of θ with
respect to z: θz � �1∕2�F 00�z�x̄� c01�z�. Substituting the
above relations to Eq. (3a) we arrive at

F 02�z�
4

−

F 00�z�
2

x̄ − c01�z� � V�x̄; z� � function of x̄: (4)

It immediately follows that, for Eq. (4) to be satisfied
(given the fact thatV is periodic in x), the optical potential
V�x̄; z� in the accelerating frame system should be a func-
tion of x̄ only, meaning that V�x̄; z� � V�x̄�. This means
that the potential in the lab coordinate system should
be z-dependent V � V�x; z�. Therefore, diffraction-free
and accelerating beams in propagation-invariant optical
lattices are, rigorously speaking, impossible. That is, for
beams to exhibit shape-invariant propagation in periodic
structures, the potential should also depend on z. There-
fore, for z-dependent optical potentials, Eq. (4) can be
rewritten as: f0.25F 02�z� − c01�z�g − 0.5F 00�z�x̄ � function
of x̄. In order for this equation tobe satisfiedwemust have
4c01�z� � F 02�z� and F 00�z� � c2. Integration of the lat-
ter equation leads us toF�z� � c3z2. Based on this relation
for the trajectory F�z�, we can calculate c1�z� and then
find the unknown function θ�x̄; z�. After few steps the re-
sult we obtain is θ�x̄; z� � c3x̄z� �c23∕3�z3. By changing
the notation of c3 to a≡ c3, we can write the trajectory
F�z� and the phase θ�x̄; z� as F�z� � az2, θ�x̄; z� �
ax̄z� �a2z3∕3�. By substituting the expressions for
F�z� and θ�x̄; z� into Eq. (2a), we can find the general
solution of Eq. (1), which is

V�x; z� � V0�x̄� − λ; (5a)

U�x; z� � ϕ�x; z� exp�i�axz − 2a2z3∕3��; (5b)

ϕx̄ x̄ � �V0�x̄� − ax̄�ϕ� γϕ3 � λϕ; (5c)

where V0�x̄� represents a given optical potential in the
moving frame, and λ is a real constant. More specifically,
for the z-dependent potential V�x; z� � V0�x̄� − λ;, the dif-
fraction-free and accelerating beam U�x; z� that satisfies
Eq. (1) is given by Eq. (5b), where ϕ�x; z� is an eigenmode
of Eq. (5c) in the moving framewith corresponding eigen-
value λ. Evidently, it is clear from Eqs. (5), that the only
acceptable trajectory for a self-accelerating and diffrac-
tion-free beam in one-dimensional periodic potential is

the parabolic one F�z� � az2 (as in the case of the Airy
beam in free space). More specifically, for a parabolically
bending lattice V0�x − az2�, the modes of the WS
Hamiltonian [17] ∂x̄ x̄ � V0�x̄� − ax̄ (corresponding to
eigenvalue λ) of the shape-invariant lattice V0�x̄� in the
moving frame are the only accelerating and diffraction-
free beams of the lab-frame Hamiltonian ∂xx �
V0�x − az2�. The phase dependence is that of the Airy
beam in free space [5,6]. The same connection between
the WS lattice solitons in the moving frame and the accel-
erating solitons in the lab frame holds in the nonlinear
domain.

At this point we have to note that for the special case of
free space V � 0, Eq. (5c) reduces to the well-known
Airy equation ϕx̄ x̄ − x̄ϕ � 0, which leads to the Airy
beams [5,6]. Likewise, more general diffractionless
and accelerating beams with nonparabolic trajectories
of the type F�z� � cz2 � z3∕3 or F�z� � cz2 − 2 sin z
can be constructed by assuming more general forms of
the optical potentials of the type V�x̄; z� � V0�x̄��
A�z�x̄� B�z�; these lead to more complicated potentials
in the lab frame, which we are not going to consider here.

For demonstration purposes and without any loss of
generality, we consider one spatial dimension even
though our results are valid for any type of periodic po-
tential in both spatial dimensions. We consider the poten-
tial V0�x̄� � A cos2�x̄� in the moving frame of reference,
which corresponds to V�x; z� � A cos2�x − az2� − λ in the
lab frame. The potential is z-dependent [18] and periodic
for every value of the propagation distance z (insets of
Fig. 1). Such solution exists only for a parabolic F�z� �
az2 trajectory. In other words, these parabolically bent
lattices are the only ones supporting diffraction-free

Fig. 1. (a) Truncated WS beam (solid lines) of the lattice in the
moving frame for a � 1 at z � 0 (the dotted lines represent
the waveguide channels). (b) Linear propagation dynamics of
the beam of (a) in a z-dependent linear potential. (c), (d) Same
quantities as in (a), (b) but for a lattice with a � 0.01. Both in-
sets illustrate the z-dependent lattice in the lab frame (the ver-
tical axis: propagation distance z, horizontal axis: transverse
coordinate x).
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and accelerating optical beams in one spatial dimension.
Any other bent lattice would lead to radiation losses.
Figures 1 illustrate the field profiles at the input z � 0

[Figs. 1(a) and 1(c)] and the diffraction dynamics
[Figs. 1(b) and 1(d)] in the corresponding z-dependent
lattice, for the two cases of A � 1, a � 1 [Figs. 1(a)
and 1(b)] and A � 1, a � 0.01 [Figs. 1(c) and 1(d)], re-
spectively. Evidently, in both cases the beams accelerate
along parabolic trajectories and they do not experience
any diffraction. Therefore, these beams are diffraction-
less and accelerating. The bending of the lattice itself also
follows a parabolic trajectory, as shown in the insets in
Figs. 1(b) and 1(d). Even though the lattice is bent
(z-dependent), there are no radiation losses upon propa-
gation. The linear coefficient a controls the spatial distri-
bution of the WS modes. In the first case, the WS modes
resemble Airy beams since the linear refractive index tilt
a � 1 is high with respect to the refractive index differ-
ence A � 1 (related to the coupling between neighboring
channels), and the input WS profile is exponentially trun-
cated. In the second regime, when the linear tilt is much
smaller than the parameter A, the WS modes are spatially
confined and still asymmetric in their intensity profile
since they are composed of higher bands Floquet–Bloch
modes. We have to note at his point that the center of
mass of our beams does follow the parabolic trajectory.
The above results can be extended to the nonlinear

regime, for γ � 1 (self-focusing). In this case, the diffrac-
tion-free and accelerating solutions are localized because
of the nonlinearity and are given by Eqs. (5), where λ rep-
resents the soliton eigenvalue (nonlinear phase shift). In
Fig. 2(a) we can see a highly confined accelerating lattice
soliton for A � 1, a � 0.001 and in Fig. 2(b) the dynamics
of the same soliton in a lattice that follows the x �
�0.035z�1.5 trajectory that bends less than the parabolic

one. We can see that the soliton is breathing upon propa-
gation and experiences radiation losses, since only in the
unique class of parabolically bended potentials diffrac-
tion-free and accelerating solitons exist. Thus, we have
identified a unique correspondence between WS lattice
solitons of the moving frame and accelerating self-
trapped beams in a parabolically bending periodic
potential. The nonlinear accelerating beams recently in-
troduced in [16] are completely different physical entities
from the accelerating lattice solitons we studied above.
Their existence bifurcation curves, stability properties as
well as their field profiles are not the same since the
underlying linear problem is different for the free-space
and the lattice geometry.

Thus far, we have examined the existence and the evo-
lution of diffractionless and accelerating beams in para-
bolically bent periodic potentials. A physically relevant
question is what happens when the lattice is invariant
in z and is not bent. This question has been previously
examined within the context of coupled-mode theory,
and it would be of interest to extend this study beyond
this tight binding regime. For low refractive index con-
trast, higher band effects become more profound and
the accelerating and diffracting WS modes are character-
ized by asymmetric intensity lobes, as illustrated in
Fig. 3(a). As such, the z-dependence of the lattice is cru-
cial for the diffraction-free character of these WS beams.

Next we demonstrate, that in stationary (propagation-
invariant) lattices, we can use such accelerating WS
beams to construct autofocusing beams [19,20] and spa-
tiotemporal Airy–Bessel discrete bullets. In particular, a
judicious superposition of two WS modes, can give us an
autofocusing beam in a stationary lattice. The appear-
ance of an abrupt focus inside the lattice is illustrated
in Fig. (3(b)). The optical intensity at the focus plane
is confined to a few waveguide channels. In contrast
to autofocusing beams constructed by caustics engineer-
ing [9,10], autofocusing in the present scenario arises
from a carefully designed superposition of the modes
of two WS-Hamitonians ∂x̄ x̄ � cos2�x̄� � 0.01x̄.

Finally, we consider propagation of accelerating opti-
cal pulses in uniform periodic potentials. Within the
coupled-mode theory approximations, the diffraction
dynamics is governed by the normalized equation
i�∂un∕∂z� � �∂2un∕∂t2� � un�1 � un−1 � 0, where the
second term accounts for dispersion, t is the time, and
un the field amplitude at the nth channel [7]. In this
regime one can derive the following analytic expression,

Fig. 2. (a) Highly confined accelerating lattice soliton for
A � 1, a � 0.001 in a parabolically bended lattice and (b) dy-
namics of the same soliton in a lattice that follows the different
trajectory x � �0.035z�1.5. In both cases the nonlinearity is
self-focusing.

Fig. 3. Diffraction dynamics of (a) a single WS mode and
(b) an autofocusing beam (superposition of two WS modes)
in a propagation-invariant lattice with A � 1, a � −0.01. In both
cases the optical intensities of the propagating beams are
depicted for various values of the propagation distance.
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by applying the separation of variables method,
in terms of Bessel and Airy functions: un �
J
−n�2

������������������
z2 � b−2

p
�e−in tan−1�bz�Ai�t − z2�eitz−i23z3 , where b is

the parameter defining the spatial extent of the beam
[5,6]. As we can see, such solution is the product of a
WS accelerating beam [7] and a temporal Airy beam
[5,6]. These spatiotemporal beams are accelerating and
dispersionless in time and accelerating in space. The
optical field therefore forms a discrete bullet confined in
time and space. It is interesting to note that the spatial
acceleration of this bullet follows a hyperbolic trajectory
while its temporal profile experiences dispersion-free
parabolic acceleration. Intensity profiles of such a solu-
tion for different propagation distances are depicted
in Fig. 4.
In conclusion, we investigated the properties of

accelerating and/or diffraction-free beams in optical lat-
tices. Our analysis indicates that diffractionless and
accelerating beams can only exist in z-dependent bend-
ing periodic potentials with a spatial profile of a
Wannier–Stark mode and the phase of an Airy beam.
Our results hold in the linear as well as in the nonlinear

domains where these beams are accelerating lattice
solitons. We also examined autofocusing effects arising
from superposition of WS modes and demonstrated the
possibility of discrete accelerating bullets in uniform
photonic lattices.
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