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Advances in topological photonics and non-Hermitian optics have drastically 
changed our perception on how interdisciplinary concepts may empower unprecedented 
applications. Bridging the two areas could uncover the reciprocity between topology 
and non-Hermiticity in complex systems. So far, such endeavors have focused mainly on 
linear-optics regime. Here, we establish a nonlinear non-Hermitian topological platform 
for control of parity-time (PT) symmetry and topological edge states. Experimentally, 
we demonstrate that optical nonlinearity effectively modulates the gain and loss of a 
topological interface waveguide in a non-Hermitian Su-Schrieffer-Heeger lattice, 
leading to switching between PT and non-PT-symmetric regimes accompanied by 
destruction and restoration of topological zero modes. Theoretically, we examine the 
fundamental issue of the interplay between two antagonistic effects: the sensitivity close 
to exceptional points and the robustness of non-Hermitian topological modes. Realizing 
single-channel control of global PT-symmetry via local nonlinearity may herald new 
possibilities for light manipulation and unconventional device applications.   
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About a dozen years ago, two important concepts were severally introduced to the realm of 

photonics, namely, the quantum Hall edge state1, 2 and the parity-time (PT) symmetry3, 4, 

leading to the birth of two ever-thriving areas - topological photonics5 and non-Hermitian 

optics6, 7. On the one hand, topologically protected edges states and photonic topological 

insulators were realized in a variety of platforms, including gyro-optic materials, helical 

waveguide arrays, aperiodic coupled resonators, bianisotropic metamaterials and synthetic 

crystalline photonic structures5, 8-11. On the other hand, by manipulating the role played by 

gain and loss, active and passive PT-symmetry in optics has also provided a plethora of 

alternative design platforms for unconventional control of light, aiming towards unique 

photonics devices based on non-Hermitian physics6, 7, 12-14.  

Intertwining these two different areas of photonics occurred naturally, leading to a new 

direction of non-Hermitian topological photonics where the interplay between 

non-Hermiticity and topology takes place. Indeed, several experiments have demonstrated 

topological nature of edge states in non-Hermitian systems, either with or without global 

PT-symmetry15-18, although the existence of such topological states was initially debated. In 

fact, it has now been realized that non-Hermitian properties can give rise to unusual 

topological phenomena including for example unusual non-Hermitian topological light 

steering and funneling19-24. Perhaps, one of the most striking developments closest to 

technological applications is the realization of topological insulator lasers25-27, in which 

topological photonics and non-Hermitian optics naturally coalesce and conspire: lasing is 

based on topologically protected modes and a laser system is inherently non-Hermitian due to 

presence of gain and loss. Topological lasers are found to exhibit superior features such as 

reduced lasing threshold, enhanced stability, and single-mode operation. 

Notwithstanding the synergetic outcome of the two areas, much of the venture in 

non-Hermitian topological photonics has so far taken place mainly in the linear-optics regime. 

Apart from topological lasers which inherently involve nonlinearity, nonlinear effects like 

optical solitons were explored separately in the two different domains, focusing on either 

their  topological28-31 or non-Hermitian32, 33 aspects. Moreover, although nonlinear 

phenomena exist in a variety of topological systems34, many open questions remain 

unanswered with respect to how nonlinearity would change the dynamics in non-Hermitian 



topological systems. In particular, how can we characterize a non-Hermitian topological 

system driven by nonlinearity? Can PT-symmetry and topological states be manipulated 

solely by nonlinear control in non-Hermitian systems? 

In this work, we demonstrate a scheme for single-channel nonlinear control of 

PT-symmetry and nonlinearity-induced restoration/destruction of non-Hermitian topological 

states. Our experimental platform is based on specific photonic Su-Schrieffer-Heeger (SSH)35, 

36 lattices consisting of cw-laser-writing continuous (“gainy”) and sectioned (“lossy”) 

waveguides and an interface defect (see Fig.1), yet the concept developed here applies to a 

broad spectrum of non-Hermitian systems that have intensity-dependent gain or loss. 

Counterintuitively, even though the optical nonlinearity changes only the real part of the 

refractive index of a bulk material, we find that it can be employed to manipulate both the 

real and imaginary parts of a waveguide potential. This leads to an active control of otherwise 

“lossy”, “gainy” or “neutral” non-Hermitian SSH lattices, switching them between PT- and 

non-PT-symmetric regimes. We also analyze theoretically the effect of nonlinearity on the 

robustness of topological defect modes as well as the eigenvalue sensitivity of the zero mode 

around the exceptional point. Our work represents a first attempt for single-channel tuning of 

a complex system with underlying dynamics driven by the interplay among topology, 

non-Hermiticity, and nonlinearity.   

 

Scheme for single-channel nonlinear tuning of PT-symmetry 

It is well known that an “active” linear non-Hermitian PT-symmetric system can be 

directly mapped onto a system with only loss simply by introducing a global decay factor 

(equivalent to offset the imaginary part of the gain-loss profile)6. In such “passive” 

PT-symmetric systems, non-Hermitian PT phenomena has been demonstrated without 

employing actual gain12, 17. We thus propose a scheme for single-channel nonlinear tuning of 

PT-symmetry and topological states in a passive PT-symmetric SSH lattice, which can be 

readily realized in our experiment, as illustrated in Fig. 1. The SSH lattice represents a 

prototypical one-dimensional (1D) topological system with chiral symmetry5, as has been 

popularly employed for the study of topologically protected quantum states37, 38, 

nonlinearity-driven topological effects39-43, and topological lasing44-46. Different from 



previous work, in which losses were introduced to achieve passive-PT symmetric systems by 

using femto-second laser-written wiggled or scattered waveguides17, 47, or by depositing lossy 

metal stripes on top of silicon waveguides22, here we employ direct cw-laser-writing 

technique48 to establish non-Hermitian SSH lattices in a bulk nonlinear crystal. As shown in 

the left panels of Fig. 1, the continuous waveguides (marked in red) represent the “gainy” 

ones, and sectioned waveguides can be “lossy” (marked in blue) or “neutral” (marked in 

green) depending on the gap size introduced between sections. Details about how the loss is 

introduced in sectioned waveguides and judiciously controlled by nonlinearity can be found 

in Supplementary Note 2. With proper control of the sectioned waveguides, a passive 

PT-symmetric SSH lattice can be realized first (middle panel). Then, under the action of 

self-focusing nonlinearity experienced by a probe beam at the interface, it can turn into a 

passive non-PT “gainy” system (top panel), as self-focusing reduces diffraction loss and 

leakage (or equivalently provides “gain”) in the center waveguide. Likewise, under the action 

of self-defocusing nonlinearity, it can turn into a passive non-PT “lossy” system (bottom 

panel), since now the nonlinearity enhances the leakage and thus entails more loss in the 

waveguide. In this way, single-channel nonlinearity can actually affect the whole lattice, 

leading to switching between a PT- and a non-PT-symmetric system. Since the three SSH 

lattices (PT-symmetric with a “neutral” defect, non-PT-symmetric with a “gainy” defect, and 

non-PT-symmetric with a “lossy” defect) can all be created initially by laser-writing, such 

dimerized lattices provide a convenient platform to achieve nonlinearity-induced switching 

between PT- and non-PT-symmetric phases, thereby to explore the dynamics of topological 

states in the non-Hermitian system. Interestingly, the Hamiltonians of these three different 

non-Hermitian lattices are inherently related (see Fig 1). Such an underlying connection 

directly affects the corresponding complex eigenvalue spectra across the exceptional point as 

analyzed below. 

 

The non-Hermitian SSH model with nonlinearly controlled interface 

The lattices illustrated in Fig. 1 can be considered as two semi-infinite SSH dimer chains 

connected by a topological defect at the interface. For theoretical analysis, let us examine the 

topological states in a non-Hermitian active SSH system with a dimerization defect, as 



illustrated in Fig. 2(a). Under the tight-binding approximation, the dynamics of the system is 

governed by the following set of coupled mode equations16, 17:       

െ݅ డ
డ௭
߮௡ ൌ ௡߮∗ߚ ൅ ܿଵ߮௡ିଵ ൅ ܿଶ߮௡ାଵ,							݊ ൌ 2, 4, ……or െ 1,െ3,……									    (1a)  

െ݅ డ
డ௭
߮௡ ൌ ௡߮ߚ ൅ ܿଶ߮௡ିଵ ൅ ܿଵ߮௡ାଵ,						݊ ൌ 1, 3, ……or െ 2,െ4,……							      (1b) 

െ݅ డ
డ௭
߮଴ ൌ ଴߮଴ߚ ൅ ܿଶ߮ଵ ൅ ܿଶ߮ିଵ,													݊ ൌ 0																																																	      (1c) 

where ߮௡  denotes the modal optical field amplitude in the ݊-th waveguide, ߚ ൌ ߙ ൅

 is the imaginary part representing	ߛ is the real part of the waveguide potential, and		ߙሺ		ߛ݅

gain or loss), ܿଵ and ܿଶ are the strong and weak coupling coefficients, respectively, and ߚ଴ 

denotes the potential of the defect waveguide at ݊ ൌ 0.		If ߛ ൌ 0 for all waveguides, the 

SSH lattice returns to the well-known Hermitian model that can support topologically 

protected mid-gap (zero-mode) states39. Even when the loss/gain is introduced (ߛ ് 0), the 

non-Hermitian SSH lattice described above can still support a PT-symmetric topological 

interface state provided that there is no gain or loss at the dimerization defect17, i.e., ߚ଴ ൌ  ,ߙ

଴ߛ ൌ 0. Assuming that the lattice is terminated at the weak-coupling bond (ܿଶሻ so no edge 

states present on either ends36, we summarize the results in Fig. 2(b) to show how an interface 

state is affected by non-Hermiticity and nonlinearity. The above coupled mode equations can 

be expressed in a convenient matrix form, and the relations between the non-Hermitian 

matrix Hamiltonians	࣢ீ,࣢௅	, and ࣢ே (corresponding to lattices with a “gainy”, “lossy” and 

“neutral” interface defect) are given in Fig. 1 (see Supplementary Note 4 for details). 

In the linear regime, ߙ	is the same for all waveguides, and a typical PT-symmetric 

topological interface state located right at the middle of the gap is illustrated by point ܣ in 

Fig. 2(b), where the left panels show the two-band diagram and eigenvalues of the lattice, and 

the right panels are the corresponding mode profiles. For all the calculations of Fig. 2, the 

coupling coefficients are taken as ܿଵ ൌ 4, 	ܿଶ ൌ 1,	and the lattice consists of 16 waveguides 

in each side of the interface. (Note that from now on the linear propagation constant for all 

waveguides is set as ߙ ൌ 0, ߛ ൌ 1 except for the center one at ݊ ൌ 0). As seen from the 

top-left panel of Fig. 2(b), all eigenmodes have only real eigenvalues, since the lattice 

respects the PT-symmetry (unbroken regime)17. In the nonlinear regime, the propagation 

constant of a given waveguide potential is generally intensity-dependent, i.e., ߚሺܫሻ ൌ ሻܫሺߙ ൅



 ሻ. As such, the eigenvalue of the topological state can be moved away from the mid-gapܫሺߛ݅

by nonlinearity, as shown already for the Hermitian SSH system36, 43. In accordance with our 

experimental situation, a probe beam initially excites only the center defect channel while it 

experiences an overall loss in the passive non-Hermitian lattice. As such, it is reasonable to 

consider that the nonlinearity is present only in the single channel in the center, therefore we 

have: ߚ଴ሺܫሻ ൌ ሻܫ଴ሺߙ ൅  ሻ, where I is the intensity of the excitation beam. When theܫ଴ሺߛ݅

nonlinearity only changes the real part of the potential while keeping	ߛ଴ ൌ 0, the eigenvalue 

of the zero-mode is shifted away from the center of the gap, moving upward (or downward) 

due to the self-focusing (or -defocusing) effect. These scenarios correspond to the modes 

marked by ܤ	(or ܥ) in Fig. 2(b), where ߚ଴	is set at 2	(or െ2). Clearly, the eigenmode 

profiles (shown in the right panels) remain symmetric as that of the mid-gap mode ܣ	, 

because the lattice overall still preserves the PT-symmetry. By contrast, if the nonlinearity 

changes the imaginary part of the potential ߛ଴, the PT-symmetry of the SSH lattice is 

destroyed. To simulate these scenarios, ߚ଴	is set to 2݅ (or െ2݅), and the corresponding 

results are marked by ܦ (or ܧ) in Fig. 2(b). In this case, the imaginary part of eigenvalues is 

shifted away from the zero-mode position, indicating that the non-Hermitian lattice is no 

longer PT-symmetric. Noticeably, in this non-PT regime, the eigenmode profiles become 

asymmetric with respect to the center defect, as more energy of the mode goes to the “lossy” 

 ሻ waveguides depending on the sign of the nonlinearity. Therefore, byܧ) ”or “gainy (ܦ)

nonlinear excitation of the defect channel in the SSH lattice, observation of asymmetrical 

mode profiles also serves as a signature for the change of the imaginary part of the waveguide 

potential, indicating whether the PT-symmetry is present or not. This provides the guidance 

for our experiments.  

 

Experimental realization of the non-Hermitian SSH lattices 

To demonstrate the nonlinear tuning of PT-symmetry as illustrated in Fig. 1, we need to 

establish sectioned waveguides to obtain the desired non-Hermitian SSH lattices. The simple 

experimental setup is sketched in Fig. 3(a), where a stripe beam from a cw-laser is employed 

to write the waveguides in a biased SBN:61 photorefractive crystal. The waveguides are 

written sideways one by one48, with either a uniform (continuous) stripe beam (for writing the 



“gainy” waveguides) or a periodically modulated (sectioned) stripe beam (for writing the 

“lossy” and “neutral” waveguides). Shutters in Fig. 3(a) selectively control the entrance of 

the writing beam in path 1 and the probe beam in path 2. In the entire writing process, the 

bias field is ܧ଴ ൌ 160ܸ݇/݉ and the ordinarily-polarized writing beam has a power of about 

 .Other experimental details are included in the Supplementary Note 1 .ܹߤ200

A passive PT-symmetric SSH lattice requires precise control of loss, so that ߛ ൌ  ଵ inߛ2

all “lossy” waveguides, ߛ ൌ ߛ ଵ in the center “neutral” waveguide, andߛ ൌ 0 in all “gainy” 

waveguides. To achieve the desired overall loss, the total number of waveguide sections 

(with section length ݈) in each channel is the same (here we have 17 sections in the 

20-mm-long crystal), but spacing between adjacent sections (characterized by a gap length 

݉) is smaller in the “neutral” waveguide as compared to that in all “lossy” waveguides. A 

superimposed writing beam pattern is shown in Fig. 3(b), consisting of alternating continuous 

and sectioned stripes except for the center defect channel. A typical SSH waveguide lattice 

written this way is shown in Fig. 3(c), which is examined by a broad beam (quasi-plane wave) 

as a probe sending along path 2. The strong and weak coupling corresponds to the smaller 

(ܾ ൌ and larger ሺܽ (݉ߤ15.4 ൌ  .ሻ channel separation, respectively, as marked in Fig݉ߤ22.8

3(b). The power transmission in three different (“gainy”, “neutral” and “lossy”) waveguides 

is in fact different due to different losses (see the insets in Fig. 3(d)). In Fig. 3(d), we plot the 

normalized intensity transmission ratio (defined as ݕ ൌ ୭୳୲ܫ ⁄଴ܫ , where ܫ୭୳୲ and ܫ଴ is the 

output intensity of the same probe beam from a sectioned and a continuous waveguide, 

respectively) as a function of the “gap ratio” (defined as ݔ ൌ ݉ ݈	⁄ , which controls the 

waveguide loss). Clearly, as the gap length ݉ increases, the loss in the waveguide increases, 

thus the transmission decreases. The plot in Fig. 3(d) is obtained by applying a numerical 

beam propagation method based on the paraxial wave equation with a waveguide potential 

(see Supplementary Note 2 for detail), and the loss coefficient ߛ is determined from the 

intensity transmission ܫ୭୳୲ ൌ ଴ܫ expሺെ2ܮߛሻ, where ܮ ൌ 20݉݉ corresponds to the crystal 

length. This plot serves as a guideline for determining the parameters for the writing beams 

used in experiment, as shown in the three insets in Fig. 3(d). For example, the “gainy” 

waveguide (ߛ ൌ 0) corresponds to the red dot at ሺݔ, ሻݕ ൌ ሺ0, 1ሻ,	since it is continuous (݉=0) 

and lossless (neglecting Fresnel reflection and assuming the crystal has no absorption). The 



“neutral” waveguide marked by the green dot at ሺݔ, ሻݕ ൌ ሺ0.40, 0.70ሻ	corresponds to a gap 

ratio of 0.40 and a transmission ratio of 0.70, which yields ߛଵ ൌ 8.93݉ିଵ. From this, we can 

in turn find the parameters for the “lossy” waveguides, marked by the blue dot at ሺݔ, ሻݕ ൌ

ሺ0.56, 0.49ሻ, with a gap ratio of 0.56 to obtain the desired loss coefficient of 2ߛଵ. The three 

insets in Fig. 3(d) are the outputs of a probe beam obtained in experiment, indicating a good 

agreement between experiment and simulation. Therefore, the SSH lattice established with 

such judicially designed writing beams fulfils the requirement for the PT-symmetry.   

 

Nonlinearity-induced transition from PT- to non-PT-symmetry 

Once the passive PT-symmetric SSH lattice is established in experiment (Fig. 3c), a 

cylindrically focused extra-ordinarily-polarized probe beam is sent into the “neutral” 

waveguide channel in the center (see illustration in the left of Fig. 4). When the probe beam 

undergoes linear propagation (i.e., without the bias field), a symmetric topological interface 

state corresponding to point A in Fig. 2b is observed, as shown in Fig. 4(a3, b3), indicating 

that the non-Hermitian lattice in this linear case respects the PT-symmetry17. Conveniently, in 

the photorefractive crystal a self-focusing or defocusing nonlinearity can be achieved by 

applying a positive or negative electric field39. We now employ such a nonlinearity to 

demonstrate the PT transition graphically illustrated in Fig. 1. 

We first fix the power of the probe beam at 2.5ܹߤ and set the bias field to be 

െ60ܸ݇ ݉⁄  to introduce the self-defocusing effect. With the buildup of defocusing 

nonlinearity, the probe beam induces an anti-guide so that its energy escapes from the center 

defect channel. This equivalently introduces more leakage (loss) to the center waveguide (or 

imaginary part of the potential), turning the SSH lattice from passive PT-symmetric to 

non-PT-symmetric phase. As such, the excited mode becomes highly asymmetric in intensity 

distribution (Fig. 4(a4, a5)). Results shown in Fig. 4(a4, b4) correspond to those of point E in 

Fig. 2(b), as more light goes to the “lossy” waveguide next to the center defect (see blue dots 

in Fig. 4(a3)). In contrast, when a self-focusing nonlinearity is employed (with a positive bias 

field of 100ܸ݇ ݉⁄ ), it induces self-guiding of the probe beam so that its diffraction loss is 

suppressed, equivalently providing gain to the center waveguide. Again, the beam turns into 

asymmetric distribution shown in Fig. 4(a2, b2), correspond to point D in Fig. 2(b), as more 



light goes to the nearby “gainy” waveguide. If the self-focusing nonlinearity is too strong, the 

beam becomes highly confined into the defect channel (Fig. 4(a1)), corresponding to a 

self-trapped nonlinear mode residing in the semi-infinite gap but not attributed to topological 

origin43. As emphasized before, the change in the real part of the index potential alone does 

not result in asymmetric modes. Therefore, these results represent the nonlinearity-induced 

transition from a PT-symmetric to a non-PT “gainy” or “lossy” system pictured in Fig. 1. 

 

Nonlinear restoration of PT-symmetric topological states 

As illustrated in Fig. 1, the transition from a PT to a non-PT lattice should be reversible 

by nonlinearity, which can be used for restoring the PT-symmetric topological states. Such an 

implementation is shown in Fig. 5, where two non-Hermitian SSH lattices are constructed by 

laser-writing with either a “gainy” (left) or a “lossy” (right) interface waveguide in the center. 

Let us consider Fig. 5(a) for example, the SSH lattice is initially equivalent to a non-PT 

“gainy” system (corresponding to the top panel in Fig. 1), so a probe beam evolves linearly 

into an asymmetric distribution (Fig 5(a3)). Under the nonlinear self-defocusing condition, 

however, the beam turns into a more symmetric profile with the characteristic feature of a 

topological mid-gap state: minimum amplitude in the two nearest-neighbor waveguides but 

non-zero amplitudes symmetrically distributed in the two next-nearest-neighbor waveguides 

(see point A in Fig. 2). This restoration of the topological state occurs due to equivalent loss 

which is introduced by the self-defocusing nonlinearity into the otherwise “gainy” waveguide 

in the center, entailing the retrieval of lattice PT-symmetry. If the strength of self-defocusing 

nonlinearity is too high (so the loss in center waveguide is beyond ߛଵ), the interface state 

becomes asymmetric again with more intensity going to the “lossy” channels (Fig. 5(a5), as 

the lattice falls into a non-PT “lossy” system. In the other direction with a self-focusing 

nonlinearity, the PT-symmetry cannot be restored, as the nonlinearity increases the gain-loss 

imbalance, eventually leading to a self-trapped state outside of the mid-gap [Fig. 5(a1, a2)], 

similar to that of Fig. 4(a1).  

The scenario corresponding to an inversed transition starting from a non-PT “lossy” 

system is shown in Fig. 5(b), where an initially asymmetric interface state (Fig. 5(b3)) in the 

linear regime turns into a symmetric topological interface state (Fig. 5(b2)) as the 



self-focusing nonlinearity brings the non-Hermitian SSH lattice back to the PT-symmetric 

phase. Direct comparison of results in Fig. 5 and those in Fig. 4 supports clearly the nonlinear 

control of PT-symmetry and non-Hermitian topological interface states illustrated in Fig. 1, 

as also corroborated by our numerical simulations (see Supplementary Note 3). 

 

Discussion:  

Topology and PT-symmetry typically describe the global properties of a system, 

whereas most of the optical nonlinearities are local. Therefore, their interplay in some sense 

is a manifestation of the interplay of locality and globality. Despite the fact in our system 

nonlinearity only changes the real part of the refraction index (in the bulk of the material), we 

introduced here a method for constructing “passive” non-Hermitian lattices, relying on that 

nonlinearity can effectively control the loss of a waveguide, that is, the imaginary part of the 

waveguide potential. Our method provides an ideal platform to explore nonlinear effects in 

non-Hermitian topological systems, which so far have gone AWOL in photonic or any other 

experiments.  

It is natural to ask: is there a general theory to study the non-Hermitian PT-symmetric 

systems driven by nonlinearity? In our current experiment and theoretical analysis, it is 

assumed that the modes experience nonlinearity only in the central defect waveguide, and we 

have focused on single-mode excitation and its propagation. To develop a general theoretical 

framework is beyond the scope of this paper; however, this can be done by extending the 

concepts introduced recently for nonlinear Hermitian topological systems43. We highlight the 

key idea here: Consider a dynamically evolving wavepacket in a nonlinear system whose 

linear counterpart is topological, non-Hermitian and PT-symmetric. The linear structure is 

described by a complex ݖ-independent refractive index ݊ߜ௅, whereas the nonlinear index 

 dependent. Then, the dynamics of such-ݖ ே௅ depends on the amplitude of the beam and is݊ߜ

a system should be governed by the nonlinear wave equation with an effective potential 

described by ݊ߜ௅ ൅ ே௅݊ߜ . By calculating its nonlinear eigenmodes and eigenvalues that 

evolve along the propagation axis ݖ, one can identify the properties of the nonlinear system 

that are inherited from the corresponding linear system, thereby unravel emergent topological 

and non-Hermitian phenomena mediated by nonlinearity43. For instance, as analyzed below, 



the eigenvalues of the nonlinear modes are more robust to disorder (thus more stable) if the 

parameters are closer to the corresponding Hermitian topologically modes. The stability is 

therefore inherited from topologically protected zero-modes, even when such topological 

protection in SSH lattices is, strictly speaking, lost due to non-Hermicity and nonlinearity. 

Such an approach is somewhat analogous to the well-known KAM theorem addressing 

nonintegrable systems.  

Another intriguing aspect is the study of nonlinear effects on the exceptional point (EP) - 

a special kind of eigenvalue degeneracy unique to non-Hermitian Hamiltonians4, 7. In 

particular, for some value of the control parameter (such as the global gain/loss amplitude) 

two or more eigenvalues and their corresponding eigenstates coalesce at the EP. Even though 

we cannot examine the behavior of our non-Hermitian lattices close to the EP due to 

experimental limitations, we highlight our theoretical finding here with respect to this point. 

In Fig. 6(a), we plot the range of the imaginary part of the complex eigenvalues 

(characterized by the eigenvalues with the maximal/minimal magnitudes of the imaginary 

part) as a function of the global gain/loss ratio of the waveguides. For the three lattices 

defined earlier, we keep the potential of the central defect waveguide fixed, as set by the 

strength of the nonlinearity. By varying the gain/loss ratio for all other waveguides, the 

bifurcation curves for the three lattices are dramatically different: Before the EP of the 

PT-symmetric lattice which has only real spectrum, the other two lattices have complex 

conjugate spectra which have different ranges of imaginary maximal/minimal magnitudes. 

Surprisingly, for some critical value of gain/loss ratio beyond the EP, all three lattices exhibit 

the same imaginary eigenvalues determined by the bulk modes of the lattices. This is in fact a 

direct outcome of the inherent connection between the Hamiltonians (Supplementary Note 4). 

At the EP of the PT symmetric system, the gap between the bands closes to zero and the 

topologically protected mode becomes extended; this indicates that a topological phase 

transition could have taken place. (Due to experimental limitations, the non-Hermitian 

lattices were fabricated for a particular global gain/loss ratio of the waveguides as illustrated 

in Fig. 6a, away from the EP).  

It is well known that a non-Hermitian system exhibits enhanced sensitivity to external 

perturbations close to the EPs49. On the other hand, a direct outcome of the topological nature 



of the SSH model is the zero-mode robustness to off-diagonal perturbations. Therefore, 

another fundamental question arises: which of the two opposite tendencies will prevail, the 

sensitivity or the robustness? We theoretically address this question in Fig. 6(b), where the 

eigenvalues of the defect mode are plotted on the complex plane for various values of defect 

potential ߚ଴, whereas the global gain/loss amplitude is fixed for the rest of the lattice. In 

other words, we examine the robustness of the defect mode to off-diagonal perturbations (on 

the coupling coefficients) that respect the lattice chiral symmetry. Strictly speaking, only the 

PT-symmetric lattice supports exactly the zero mode and, as a result, the complete 

topological robustness. Once the eigenvalue of the defect mode driven away from the central 

(0, 0) position in the complex plane, the topological protection is gradually lost. Interestingly 

enough, this loss of protection is not “isotropic” (in a sense that the instability of the defect 

mode grows in a preferred direction in the complex spectra), and it is enhanced when the 

global gain/loss amplitude is tuned close to the EP. Such novel effects certainly merit further 

investigation. 

Still, for nonlinear non-Hermitian topological systems, there are many other 

fundamental questions yet to answer. For instance, how to characterize the topological 

invariants for finite non-Hermitian SSH lattices driven by nonlinearity, as one cannot simply 

employ the formulae for calculating the Chern number or the Zak phase developed for 

infinite Hermitian systems? More intriguingly, how would nonlinearity affect the topological 

phase and classification of symmetry and topology in non-Hermitian systems50? Undoubtedly, 

the interaction and synergy between nonlinearity, topology and non-Hermiticity will lead to a 

new paradigm for control of complex systems and for development of advanced photonic 

devices.  

 

Methods 

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of this paper.  

 

  



Acknowledgements 

This research is supported by the National Key R&D Program of China under Grant No. 

2017YFA0303800, the National Natural Science Foundation (11922408, 91750204, 

11674180), PCSIRT, and the 111 Project (No. B07013) in China. H.B. acknowledge support 

in part by the Croatian Science Foundation Grant No. IP-2016-06-5885 SynthMagIA, and the 

QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and 

European Union through the European Regional Development Fund - the Competitiveness 

and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).  

 

 

Conflict of interests 

The authors declare no conflicts of interest. The authors declare no competing financial 

interests. 

 

Contributions 

All authors contributed to this work.  



References:�

1. Haldane, F. D., Raghu, S. Possible realization of directional optical waveguides in photonic 

crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). 

2. Raghu, S., Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. 

Phys. Rev. A 78,  (2008). 

3. Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Musslimani, Z. H. Beam Dynamics in 

$\mathcal{P}\mathcal{T}$ Symmetric Optical Lattices. Phys. Rev. Lett. 100, 103904 (2008). 

4. Klaiman, S., Günther, U., Moiseyev, N. Visualization of Branch Points in 

$\mathcal{P}\mathcal{T}$-Symmetric Waveguides. Phys. Rev. Lett. 101, 080402 (2008). 

5. Ozawa, T., et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019). 

6. El-Ganainy, R., Makris, K. G., Khajavikhan, M., Musslimani, Z. H., Rotter, S., Christodoulides, 

D. N. Non-Hermitian physics and PT-symmetry. Nat. Phys. 14, 11-19 (2018). 

7. Özdemir, Ş. K., Rotter, S., Nori, F., Yang, L. Parity–time symmetry and exceptional points in 

photonics. Nat. Mater. 18, 783-798 (2019). 

8. Wang, Z., Chong, Y., Joannopoulos, J. D., Soljačić, M. Observation of unidirectional 

backscattering-immune topological electromagnetic states. Nature 461, 772-775 (2009). 

9. Rechtsman, M. C., et al. Photonic Floquet topological insulators. Nature 496, 196-200 (2013). 

10. Khanikaev, A. B., Hossein Mousavi, S., Tse, W.-K., Kargarian, M., MacDonald, A. H., Shvets, 

G. Photonic topological insulators. Nat. Mater. 12, 233-239 (2013). 

11. Hafezi, M., Mittal, S., Fan, J., Migdall, A., Taylor, J. M. Imaging topological edge states in 

silicon photonics. Nat. Photon. 7, 1001-1005 (2013). 

12. Guo, A., et al. Observation of $\mathcal{P}\mathcal{T}$-Symmetry Breaking in Complex 

Optical Potentials. Phys. Rev. Lett. 103, 093902 (2009). 



13. Rüter, C. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., Kip, D. 

Observation of parity–time symmetry in optics. Nat. Phys. 6, 192-195 (2010). 

14. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D. N., Peschel, U. 

Parity–time synthetic photonic lattices. Nature 488, 167-171 (2012). 

15. Zeuner, J. M., et al. Observation of a Topological Transition in the Bulk of a Non-Hermitian 

System. Phys. Rev. Lett. 115, 040402 (2015). 

16. Poli, C., Bellec, M., Kuhl, U., Mortessagne, F., Schomerus, H. Selective enhancement of 

topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 

(2015). 

17. Weimann, S., et al. Topologically protected bound states in photonic parity–time-symmetric 

crystals. Nat. Mater. 16, 433-438 (2017). 

18. Xiao, L., et al. Observation of topological edge states in parity–time-symmetric quantum walks. 

Nat. Phys. 13, 1117-1123 (2017). 

19. Takata, K., Notomi, M. Photonic Topological Insulating Phase Induced Solely by Gain and 

Loss. Phys. Rev. Lett. 121, 213902 (2018). 

20. Pan, M., Zhao, H., Miao, P., Longhi, S., Feng, L. Photonic zero mode in a non-Hermitian 

photonic lattice. Nat. Commun. 9, 1308 (2018). 

21. Zhu, W., et al. Simultaneous Observation of a Topological Edge State and Exceptional Point in 

an Open and Non-Hermitian Acoustic System. Phys. Rev. Lett. 121, 124501 (2018). 

22. Song, W., et al. Breakup and Recovery of Topological Zero Modes in Finite Non-Hermitian 

Optical Lattices. Phys. Rev. Lett. 123, 165701 (2019). 

23. Zhao, H., Qiao, X., Wu, T., Midya, B., Longhi, S., Feng, L. Non-Hermitian topological light 



steering. Science 365, 1163 (2019). 

24. Weidemann, S., et al. Topological funneling of light. Science 368, 311 (2020). 

25. Harari, G., et al. Topological insulator laser: Theory. Science 359, eaar4003 (2018). 

26. Bandres, M. A., et al. Topological insulator laser: Experiments. Science 359, eaar4005 (2018). 

27. Zeng, Y., et al. Electrically pumped topological laser with valley edge modes. Nature 578, 

246-250 (2020). 

28. Lumer, Y., Plotnik, Y., Rechtsman, M. C., Segev, M. Self-Localized States in Photonic 

Topological Insulators. Phys. Rev. Lett. 111, 243905 (2013). 

29. Ablowitz, M. J., Curtis, C. W., Ma, Y.-P. Linear and nonlinear traveling edge waves in optical 

honeycomb lattices. Phys. Rev. A 90, 023813 (2014). 

30. Leykam, D., Chong, Y. D. Edge Solitons in Nonlinear-Photonic Topological Insulators. Phys. 

Rev. Lett. 117, 143901 (2016). 

31. Mukherjee, S., Rechtsman, M. C. Observation of Floquet solitons in a topological bandgap. 

Science 368, 856 (2020). 

32. Musslimani, Z. H., Makris, K. G., El-Ganainy, R., Christodoulides, D. N. Optical Solitons in 

$\mathcal{P}\mathcal{T}$ Periodic Potentials. Phys. Rev. Lett. 100, 030402 (2008). 

33. Wimmer, M., Regensburger, A., Miri, M.-A., Bersch, C., Christodoulides, D. N., Peschel, U. 

Observation of optical solitons in PT-symmetric lattices. Nat. Commun. 6, 7782 (2015). 

34. Smirnova, D., Leykam, D., Chong, Y., Kivshar, Y. Nonlinear topological photonics. Applied 

Physics Reviews 7, 021306 (2020). 

35. Su, W. P., Schrieffer, J. R., Heeger, A. J. Solitons in Polyacetylene. Phys. Rev. Lett. 42, 

1698-1701 (1979). 



36. Malkova, N., Hromada, I., Wang, X., Bryant, G., Chen, Z. Observation of optical Shockley-like 

surface states in photonic superlattices. Opt. Lett. 34, 1633-1635 (2009). 

37. Blanco-Redondo, A., Bell, B., Oren, D., Eggleton, B. J., Segev, M. Topological protection of 

biphoton states. Science 362, 568 (2018). 

38. Bello, M., Platero, G., Cirac, J. I., González-Tudela, A. Unconventional quantum optics in 

topological waveguide QED. Sci. Adv. 5, eaaw0297 (2019). 

39. Malkova, N., Hromada, I., Wang, X., Bryant, G., Chen, Z. Transition between Tamm-like and 

Shockley-like surface states in optically induced photonic superlattices. Phys. Rev. A 80, 

043806 (2009). 

40. Hadad, Y., Khanikaev, A. B., Alù, A. Self-induced topological transitions and edge states 

supported by nonlinear staggered potentials. Phys. Rev. B 93, 155112 (2016). 

41. Dobrykh, D. A., Yulin, A. V., Slobozhanyuk, A. P., Poddubny, A. N., Kivshar, Y. S. Nonlinear 

Control of Electromagnetic Topological Edge States. Phys. Rev. Lett. 121, 163901 (2018). 

42. Bisianov, A., Wimmer, M., Peschel, U., Egorov, O. A. Stability of topologically protected edge 

states in nonlinear fiber loops. Phys. Rev. A 100, 063830 (2019). 

43. Xia, S., et al. Nontrivial coupling of light into a defect: the interplay of nonlinearity and topology. 

Light Sci. Appl. 9, 147 (2020). 

44. St-Jean, P., et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 

11, 651-656 (2017). 

45. Zhao, H., et al. Topological hybrid silicon microlasers. Nat. Commun. 9, 981 (2018). 

46. Parto, M., et al. Edge-Mode Lasing in 1D Topological Active Arrays. Phys. Rev. Lett. 120, 

113901 (2018). 



47. Kremer, M., Biesenthal, T., Maczewsky, L. J., Heinrich, M., Thomale, R., Szameit, A. 

Demonstration of a two-dimensional $${\cal P}{\cal T}$$PT-symmetric crystal. Nat. Commun. 

10, 435 (2019). 

48. Xia, S., et al. Unconventional Flatband Line States in Photonic Lieb Lattices. Phys. Rev. Lett. 

121, 263902 (2018). 

49. Hodaei H, Hassan AU and Wittek S et al. Enhanced sensitivity at higher-order exceptional 

points. Nature 2017; 548: 187–91 

50. Kawabata, K., Shiozaki, K., Ueda, M., Sato, M. Symmetry and Topology in Non-Hermitian 

Physics. Phys. Rev. X 9, 041015 (2019). 

  



 

 

 

Figure 1. Illustration of single-channel nonlinear tuning of PT-symmetry. A “passive” PT-symmetric 

SSH lattice (middle panel) consisting of alternating continuous and sectioned waveguides can be switched 

to a non-PT “gainy” system (top panel) or a non-PT “lossy” system (bottom panel), thanks to the 

self-focusing or -defocusing nonlinearity along the topological defect channel at the center. The switching 

directions can be readily reversed, leading to destruction and restoration of the topological PT-symmetric 

interface state. In experiment, the cylinders illustrated here are replaced by one-dimensional continuous 

“gainy” (red) and sectioned “neutral” (green) or “lossy” (blue) waveguides via laser-writing, representing 

passive PT lattices. Red, green and blue dots represent “gainy”, “neutral” and “lossy” lattice sites (ߛ 
represents the imaginary part of a waveguide potential), and vertical colored bars denote that the 

corresponding non-Hermitian system is non-PT-symmetric “gainy”, PT-symmetric “neutral” and 

non-PT-symmetric “lossy”, respectively. The underlying relations between the matrix Hamiltonians that 

connect the three active non-Hermitian lattice models is also shown here, as analyzed in the 

Supplementary Note 4. 

 

  

 

  



 
 

 

 

 

Figure 2. The non-Hermitian SSH lattice and its topological interface states. (a) Illustration of a 

PT-symmetric SSH lattice with an interface topological defect located at site n=0, where ܿଵ and ܿଶ 

denote the strong and weak coupling coefficients, and the colored dots represent different lattice sites. (b) 

Left panels show calculated eigenvalues for a finite lattice with 33 sites, where red circles and blue dots 

denote real and imaginary parts of the eigenvalues, and shaded regions illustrate the two-band structure of 

an infinite lattice. Right panels show the corresponding eigenmode profiles, where the eigenvalues for 

points A to E are obtained when the propagation constant ߚ଴ of the center waveguide is changed to 

0, 2, െ2, 2݅ and െ2݅, respectively, while keeping ߚ∗	for all the “gainy” and ߚ for all the “lossy” 

waveguides unchanged. Color codes for different waveguides and PT phases are the same as in Fig. 1. 

 

 

 

  



 

 

 

Figure 3. Realization of a passive PT-symmetric SSH lattice with an interface. (a) Schematic for 

cw-laser-writing of waveguides, where paths 1 and 2 are for writing and probing beams, respectively, 

launched into a 20 mm-long nonlinear SBN crystal. The shutters in each path control the entrance of the 

beams as needed. (b) Sideview of the writing beam pattern, where the gap between sectioned waveguides 

is different for the center “neutral” (ߛ ൌ ߛ) ”and all other “lossy	ଵሻߛ ൌ  ”waveguides. The “gainy	ଵሻߛ2

waveguides ሺߛ ൌ 0ሻ  are all continuous. The waveguide spacing is ܽ ൌ ݉ߤ22.8  and ܾ ൌ ݉ߤ15.2 , 

which determines the coupling for the dimer. (c) The written passive PT-symmetric lattice as examined by 

a broad plane-wave beam. (d) Plot of transmission ratio (ܫ௢௨௧ ⁄଴ܫ ) as a function of the gap ratio (݉ ݈⁄ ) in a 

single waveguide from simulation. Three insets show the sideview of writing beams (top) and 

corresponding output patterns (bottom) of same probe beam from the gainy,	neutral, and lossy waveguides 

taken in experiment, where desired losses are consistent with numerical simulation.  

 

 

  



 

 

 

 
Figure 4. Observed single-channel nonlinear destruction of a PT-symmetric topological interface 

state. (a1-a5) Experimental results showing output transverse patterns of a probe beam launched into the 

center defect channel. (b2-b4) Simulation results showing sideview of propagation corresponding to 

(a2-a4). Left panel illustrates a non-Hermitian SSH lattice initially under “passive” PT-symmetry, which 

supports a linear PT-symmetric topological state (a3, b3). With increased strength of self-focusing 

nonlinearity, the lattice turns into a non-PT “gainy” system (as illustrated in Fig. 2), so the mid-gap state 

becomes asymmetric as more energy goes to the nearby “gainy” waveguides (a2, b2), corresponding to D 

in Fig. 1(b). The situation for transition to a non-PT “lossy” system under self-defocusing nonlinearity is 

shown in (a4, b4), where more energy goes to the nearby “lossy” waveguides. This can be seen more 

clearly from superimposed intensity profiles at ݖ ൌ 20݉݉	(white lines) in (b2-b4). When the nonlinearity 

is too high, the beam becomes strongly localized or delocalized (a1, a5), corresponding to excitation of 

nonlinear modes not of topological origin. 

 

  



 

 

 
Figure 5. Nonlinear restoring of topological interface states in an initially non-PT lattice. The 

non-Hermitian SSH lattice is fabricated with a gainy (left) or lossy (right) interface waveguide, so it is 

initially at non-PT-symmetric phase. A probe beam launched into the center channel cannot evolve into a 

symmetric topological interface state in the linear regime (a3, b3), but a symmetric topological state is 

established under the action of self-defocusing (or -focusing) nonlinearity in the non-PT “gainy” (or 

“lossy”) lattice, corresponding to results shown in (a4) (or (b2)). At different strength of nonlinearity, more 

localized or delocalized outputs of the probe beam are shown in (a1-a5) and (b1-b5), as corroborated by 

numerical simulation detailed in Supplementary Note 3. 

 

  



 

 

 

 

 

Figure 6. Theoretical analysis of complex spectra around exceptional point and zero-mode 

robustness. (a) The eigenvalue spectra of the three lattices (dashed-green for the “neutral”, solid-blue for 

the “lossy”, and solid-red for the “gainy”) vs. global gain-loss amplitude ratio of the lattices. Plotted here 

are the eigenvalue envelopes formed by the maximal and minimal imaginary parts, while the values for the 

central defect potential are fixed in all three lattices. Exceptional point (EP) is marked for the “neutral” 

PT-symmetric lattice, beyond which the imaginary eigenvalues for the three lattices becomes identical. The 

three colored dots before the EP correspond to the experimental gain/loss parameters used for 

single-channel tuning (ߛ଴ = 2݅, 0, െ2݅ for the “lossy”, “neutral” and “gainy” systems, respectively). 

Other lattice parameters are the same as for Fig. 2 (ܿଵ ൌ 4, 	ܿଶ ൌ 1;	the lattice has 33 sites). (b) Sensitivity 

of the defect mode eigenvalues to the perturbation on the coupling coefficients for a fixed gain-loss 

amplitude. The red dots denote the eigenvalue fluctuation from 100 realizations of added perturbation, and 

the blue dot corresponds to the initial defect eigenvalue. The inset graphically depicts the corresponding 

values of the central defect potential β0 on the complex plane. Notice the perfect stability for the exact 

zero-mode at the origin in (b). 

 

 

 

 


