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We predict that Bessel-like beams of arbitrary integer
order can exhibit a tunable self-similar behavior (that
take an invariant form under suitable stretching trans-
formations). Specifically, by engineering the amplitude
and the phase on the input plane in real space, we show
that it is possible to generate higher-order vortex Bessel-
like beams with fully controllable radius of the hol-
low core and maximum intensity during propagation.
In addition, using a similar approach, we show that
it is also possible to generate zeroth order Bessel-like
beams with controllable beam width and maximum in-
tensity. Our numerical results are in excellent agree-
ment with our theoretical predictions.
© 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

Diffraction is a phenomenon that naturally occurs during
optical wave propagation. Propagation invariant (PI) fields, in
their ideal form, carry infinite power and maintain an invariant
profile as they propagate [1, 2]. Finite power truncations of PI
fields, which carry finite power and thus are experimentally
realizable, can retain many of the features of ideal PI fields. The
main characteristic of PI fields that is utilized in most of the
applications is the high intensity lobe which, in finite power
truncations, can still remain almost invariant during propaga-
tion for several diffraction lengths. There are two main classes
of PI optical fields. The first is the Bessel beam [3, 4], which
relies on the generation of an extended focal line and its main
lobe propagates along the optical axis. The second is the Airy
beam [5, 6], which relies on the presence of a caustic or a catas-
trophe, and propagates along a parabolic trajectory. Several
applications benefit from the use of PI beams, ranging from
particle manipulation [7–9], microscopy and imaging [10–12],
filamentation [13], and free space optical communications [14]
to mention a few.

Higher order Bessel beams exhibit a zero on-axis intensity
surrounded by concentric rings. This dark spot is an immediate
consequence of the phase singularity which is expressed through
the azimuthial phase term einθ , and is associated with the order
n and thus the induced vorticity. Higher order Bessel beams
carrying orbital angular momentum were first realized experi-
mentally in [15], but later works achieved higher efficiency by
using an axicon [16] and other techniques [17]. This led to excit-
ing applications in the areas of plasma generation and filamenta-
tion [18], particle manipulation [19, 20], material processing [21],
and free-space optical communications [22].

Engineering the properties of Bessel beams has been an is-
sue of fundamental importance in terms of applications. In this
respect, several works have considered how to engineer the tra-
jectory of Bessel beams. Specifically, the idea of snaking a beam
was proposed in [23]. Spiraling Bessel beams were proposed
and observed in [24, 25]. Similar principles were used in [26]
for a snaking beam capable of propagating around obstacles.
Helicon beams result from the superposition of standard Bessel
beams [27–29]. A generic approach that addresses the problem
of generating a Bessel beam that follows, not particular classes
of paths, but generic arbitrary trajectories was proposed in [30].
It was followed by an experimental observation [31] and gen-
eralizations in the non-paraxial domain [32] and in the case of
vortex Bessel-like beams [20]. In [33] a technique was proposed
to engineer the axial profile of Bessel beams (axial intensity and
lateral cross section) in the Fourier space. Pin beams, a class of
Bessel-like beams with engineered width that decreases with
the propagation distance, exhibit robust propagation through
atmospheric turbulence over kilometric distances [34].

Here we propose a method for the generation of vortex Bessel-
like beams with the tunable parameters being the hollow core
radius and the maximum amplitude. This is achieved by en-
gineering the amplitude and the phase of the optical wave on
the input plane in real space. Our method is also applied in the
case of zeroth order Bessel-like beams, in which case the width
as well as the axial (maximum) intensity are fully controllable.
The optical waves considered here take an invariant form under
suitable stretching transformations and, thus, they can be con-
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sidered as self-similar. Our theoretical results are in excellent
agreement with direct numerical simulations.

Let us start by considering the Fresnel diffraction integral
for the dynamics of an optical beam in a dielectric medium in
cylindrical coordinates

ψ(r, θ, z) =
ei kr2

2z einθ

iλz

∫
R

dρ
∫ 2π

0
dsA(ρ)ρeiφ−ins+ik ρ2−2rρ cos s

2z , (1)

where k = 2π/λ is the wavenumber, λ is the optical wave-
length, (r, θ, z) are cylindrical coordinates with (r, θ) being the
transverse polar parameters and z being the longitudinal dis-
tance, (ρ, ξ) are the polar coordinates on the input plane, and
s = θ − ξ. In Eq. (1) the initial condition is decomposed into
amplitude and phase as ψ0 = A(ρ)eiφ(ρ)+inξ , where n is the
topological charge. Let us first focus in the case of beams with-
out vorticity n = 0. By making the assumptions that (i) the
amplitude A(ρ) is a slowly varying function, (ii) a single ray
emerges from each radial location ρ, and (iii) r � z/(kρ), we
derive the ray equation

φ′(ρ) = −kρ/z (2)

and the following relation for the dynamics of the optical
wave [35]

ψ(r, z) =
ρA(ρ)eiΨ0

iz
(2πk)1/2∣∣∣ 1
z − 1

zc

∣∣∣1/2 J0

(
krρ

z

)
. (3)

In Eq. (3) Ψ0 = φ(ρ) + k(r2 + ρ2)/(2z) + µπ/4, µ = sgn(1/z−
1/zc), and we have defined

zc = −k/φ′′(ρ). (4)

In addition, we define the width of the Bessel beam as

W = 2z/(kρ). (5)

After some calculations, we can express Eq. (3) in the simpler
form

ψ(r, z) = (2πkρρ′(z))1/2 A(ρ)eiΨ0

i
J0

(
2r
W

)
(6)

where we have selected

ρ′(z) > 0 (7)

and thus µ = sgn(ρ′(z)) = 1. We relate the full width at half
intensity maximum (FWHM) with W via W0 = w0W, where w0
is the width of the main lobe of J0(2r) at half intensity maximum.

The ray picture of the zeroth-order Bessel-like beams consists
of rays emitted from expanding concentric circles with different
inclinations that intersect along a focal line that passes perpen-
dicularly through the center of the circles. The condition given
by Eq. (7) results to a 1− 1 correspondence between the location
of the ray on the input plane and the on-axis focal distance z.
Furthermore, since ρ′(z) > 0 then as ρ increases z also increases.
The scenario where ρ′(z) < 0 also provides such a 1− 1 corre-
spondence but, in this case, rays from smaller ρ focus at larger
distances z. This leads to the problem of ray interference that
reduces the quality of the resulting beam. A more convenient
form of Eq. (7) is

W(z)−W ′(z)z > 0. (8)

The on-axis maximum amplitude of the Bessel beam is related
to the amplitude on the input plane as

U(z) = (2kπρρ′(z))1/2 A(ρ). (9)
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Fig. 1. (a) Propagation dynamics of a zeroth order Bessel-like
beam. The beam width increases linearly with the propaga-
tion distance as W = a + bz with a = 0.05, b = 0.006. Also
w0 = 1.13 and U(z) = 1. In (b) and (c) the maximum intensity
and FWHM along z are shown, respectively. (d)-(f) Intensity
cross-sections at propagation distances indicated by the white
dashed-dotted lines in (a). Numerical (theoretical) results are
represented by green solid line (black circles).

The above calculations can be used to generate Bessel beams
with preassigned width W(z) and maximum amplitude U(z) as
a function of the propagation distance. Depending on the com-
plexity of W(z) the calculations can be carried out analytically
or numerically.

Let us discuss some specific examples. For a power-law beam
width

W(z) = a + bzc

Eq. (8) is satisfied as long as a + b(1− c)zc > 0. In particular, for
a linearly varying (increasing or decreasing) beam width (c = 1)
the phase φ(ρ) = ρ(kbρ− 4)/(2a) is single valued provided that
a > 0. On the other hand, if a = 0 Eq. (8) is satisfied when
c < 1. The required phase on the input plane is then given
by φ = −kρ2[(1 − c)/(1 − 2c)](2/(kbρ))1/(1−c) for c 6= 1/2,
whereas for c = 1/2 we have φ = −4 log(ρ)/(b2k). In the
particular case where c = −1 the width is inversely proportional
to the propagation distance. These solutions are called pin-like
beams and were recently examined in detail in [34]. Note that
for c = −1 the phase exponent 3/2 is characteristic of the Airy
beam.

In all our simulations we normalize the transverse radial coor-
dinate according to r0 and the longitudinal coordinate according
to z0 = kr2

0. In addition, since in many cases A(ρ)→ ∞ as ρ→ 0,
to eliminate the artificial singularity, the amplitude on the input
plane is multiplied with a hyperbolic tangent function with ar-
gument proportional to ρ. In Fig. (1) we select the beam width
to increase linearly with the propagation distance (W = a + bz).
We see that there is an excellent agreement between the theoreti-
cal and the numerical results. Note that the width of the Bessel
beam on the output is 6 times larger as compared to the initial
plane.

In the case of vortex Bessel-like beams, rather than engineer-
ing the width of the main (first) lobe of the beam, it is more
useful to engineer the inner radius of the cylindrical high inten-
sity surface that surrounds the void region as a function of the
propagation distance R f (z). In particular, the calculated value
of |ψ(R f )| is selected to be half of the maximum intensity of
the first Bessel ring. We start by applying a stationary phase
approximation to the radial coordinate, ρ, of Eq. (1). As a result



Letter Optics Letters 3

we obtain the ray equation

φ′(ρ) + k(ρ− r cos s)/z = 0 (10)

which is utilized to integrate the Fresnel integral over ρ. Sub-
sequently, we apply a stationary phase approximation to the
angular variable, s, leading to the additional relation for the ray
dynamics

n = krρ sin s/z. (11)

By directly integrating the Fresnel integral over s, we derive the
following equation for the amplitude dynamics

ψ(r, θ, z) =
ρA(ρ)eiΨn

i1+nz
(2πk)1/2∣∣∣ 1
z − 1

zc

∣∣∣1/2 Jn

(
krρ

z

)
, (12)

where Ψn = Ψ0 + nθ. It is worth pointing out that Eq. (12) can
be considered as a generalization of Eq. (3). The trajectory of a
ray on the r− z plane is independent from the launch angle on
the input plane. In particular, by eliminating the angle s from
the ray Eqs. (10)-(11), we find that the rays follow the hyperbolic
trajectory

r2 =
(

ρ +
z
k

φ′(ρ)
)2

+

(
nz
kρ

)2
. (13)

We can determine the location of the focal ring from the relation
dr2/dz = 0 leading to

(z, r f ) =

(
− kφ′(ρ)ρ3

n2 + (φ′(ρ))2ρ2 ,
|n|ρ

(n2 + (φ′(ρ))2ρ2)1/2

)
. (14)

Furthermore, by using Eq. (13) we can now express ρ as a func-
tion of the propagation distance

ρ(z) =

r2
f (z) +

(
nz

kr f (z)

)2
1/2

. (15)

The ray picture of the higher-order Bessel-like beams proposed
here consists of rays emitted at skewed angles from expanding
concentric circles with different inclinations that generate hyper-
bolic surfaces. The minimum radius of the rays from the axis r f
is achieved at z f .

As in the case of zeroth order Bessel-like beams, we define
the width of a vortex Bessel-like beam as

W =
2z
kρ

= − 2φ′(ρ)ρ2

n2 + (φ′(ρ))2ρ2 . (16)

The derivative of the phase is related to the vortex trajectory
through

φ′(ρ) = −n2z/(kρr2
f ). (17)

We also satisfy the constraint for an increasing ρ(z) [Eq. (8)].
Simplified formulas are derived by utilizing the inequality

|φ′(ρ)|ρ � |n|, which is equivalent to the assumption that the
radius of a ray on the input plane is much larger than the focal
radius, ρ � r f . We would like to point out that this latter
approximation is valid in most of the relevant cases. Thus we
obtain the following relation

(z, r f ) = (−kρ/φ′(ρ),−|n|/φ′(ρ))

for the focal coordinates. Note that |ψ(r f )| is in very good agree-
ment with |ψ(R f )| and thus r f ≈ R f . The largest deviation
occurs for n = 1 (R f /r f ≈ 0.91) while for n = 2 we have
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Fig. 2. (a) Propagation dynamics of a self-similar Bessel-like
beam carrying orbital angular momentum. The ring radius
increases linearly with z as r f (z) = a + bz with a = 0.05,
b = 0.006 (black dashed lines). Also n = 3, and U(z) = 1. In
(b) and (c) the maximum intensity and R f along z are shown,
respectively. (d)-(f) Intensity cross-sections at propagation
distances indicated by the white dashed-dotted lines in (a).
Numerical (theoretical) results are represented by green solid
lines (black circles).

R f /r f ≈ 0.98. In addition the width of the Bessel-like beam
takes the simple form

W = −2/φ′(ρ) = 2r f /|n|. (18)

From Eq. (18), we see that W and r f are proportional, as expected
due to the self-similar nature of the solutions. Also from Eqs. (17),
(18), we obtain the interesting relationship r f = (n/k)(z/ρ). It
is worth mentioning that, in this approximation, the relation
between the width W and the phase φ is identical to the case
of zero vorticity. Following the relevant calculations, it can be
shown that the beam dynamics is given by

ψ(r, θ, z) = (2πkρρ′(z))1/2 A(ρ)eiΨn

i1+n Jn

(
2r
W

)
. (19)

Equation (19), which holds when |φ′|ρ� |n|, can be considered
as a generalization of Eq. (6) for nonzero values of n. In order
to achieve the intended maximum amplitude U(z) along the
propagation distance, we choose the amplitude on the input
plane as

A(ρ) = U(z)/[(2πkρρ′(z))1/2c1], (20)

where c1 = max |Jn(r)|.
We would like to point out that it is possible to extend the

propagation distance of these solutions beyond the critical value
z = zcr after which the solution does not satisfy Eq. (7). In
particular, we can select a value zm < zcr such that for z > zm
the Bessel-like beam becomes a regular Bessel beam (having
constant width).

We have performed numerical simulations for different
classes of self-similar vortex Bessel-like beams. In the first ex-
ample shown in Fig. 2, we have selected the vortex radius to
increase in a linear manner as r f = a + bz with positive a and b,
the maximum amplitude to be constant U = 1, and the topologi-
cal charge n = 3. Interestingly, in accordance to our theoretical
model, a 6 times increment over the initial radius and beam-
width is achieved. We see that our theoretical predictions are in
excellent agreement with our numerical results.

In the second example shown in Fig. 3, we have selected a
vortex with topological charge n = 2, and the core radius to



Letter Optics Letters 4

0 15 30 45
0

1

2

numerical
predicted

0 15 30 45
0

.3

.6

-2 0 2
0

1

2

-2 0 2
0

1

2

-2 0 2
0

1

2

(a)

r

z

d

e

f

(b)m
ax

|ψ
|2

z

(c)

R
f

z
(d)

|ψ
|2

r

(e)

r

(f)

r

Fig. 3. Same as in Fig. 2 but for linearly decreasing ring radius
r f = a + bz with a = 0.5, b = −0.0075, n = 2. Here the
maximum amplitude is U(z) = 1 + 0.5 sin2(3πz/50).
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Fig. 4. Same as in Fig. 2, but for r f = a + b sech[γ(z− c)] with
a = 0.025, b = γ = 0.1, c = 25, n = 1, and U(z) = 1.

decrease linearly with the propagation distance (r f = a + bz
with a positive and b negative). In addition, the maximum
amplitude U is the sum of a constant and a sinusoidal function.
During propagation the initial radius decreases by 75%.

In the final example, we have selected a hyperbolic secant
modulation of the hollow core radius. In Fig. 4, we depict results
for the propagation of such a first order vortex Bessel beam,
where the maximum intensity is selected to be constant. To
ensure that ρ(z) is an increasing function we have tested that
Eq. (8) is fulfilled.

In conclusion, we have shown that it is possible to generate
self-similar vortex Bessel-like beams with pre-designed dark
core radius and fully controllable maximum intensity. In addi-
tion, we have used our method to generate Bessel-like beams
without vorticity with tunable width and maximum intensity.
Our theoretical results are in excellent agreement with our nu-
merical simulations. The ability to dynamically control the
parameters of self-healing Bessel-like beams with or without
vorticity is of particular importance, taking into account the ap-
plicability of such PI waves in many areas of optics. Such optical
waves can be generated experimentally by encoding both the
amplitude and the phase into phase only filters [36, 37].

FUNDING

This research is funded by the Greek State Scholarships Founda-
tion (IKY), project (MIS-5000432) and by the National Key R&D
Program of China (Grant No. 2017YFA0303800)

REFERENCES

1. N. K. Efremidis, Z. Chen, M. Segev, and D. N. Christodoulides, Optica
6, 686 (2019).

2. D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005).
3. J. Durnin, J. J. Miceli, and J. H. Eberly, Phys. Rev. Lett. 58, 1499

(1987).
4. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
5. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
6. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys.

Rev. Lett. 99, 213901 (2007).
7. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, Opt. Commun.

197, 239 (2001).
8. J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
9. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N.

Christodoulides, and Z. Chen, Opt. Lett. 36, 2883 (2011).
10. T. Planchon, L. Gao, D. Milkie, M. Davidson, J. Galbraith, C. Galbraith,

and E. Betzig, Nat. Methods 8, 417 (2011).
11. S. Jia, J. C. Vaughan, and X. Zhuang, Nat. Photon. 8, 302 (2014).
12. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Lladó, D. E. K. Ferrier,

T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, Nat. Methods 11, 541
(2014).

13. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N.
Christodoulides, Science 324, 229 (2009).

14. P. Birch, I. Ituen, R. Young, and C. Chatwin, J. Opt. Soc. Am. A 32,
2066 (2015).

15. A. Vasara, J. Turunen, and A. T. Friberg, J. Opt. Soc. Am. A 6, 1748
(1989).

16. C. Paterson and R. Smith, Opt. Commun. 124, 121 (1996).
17. C. Vetter, R. Steinkopf, K. Bergner, M. Ornigotti, S. Nolte, H. Gross,

and A. Szameit, Laser & Photonics Rev. 13, 1900103 (2019).
18. J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Y. Margolin,

and L. N. Pyatnitskii, Phys. Rev. E 62, R7603 (2000).
19. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and

K. Dholakia, J. Opt. B: Quantum Semiclassical Opt. 4, S82 (2002).
20. J. Zhao, I. D. Chremmos, D. Song, D. N. Christodoulides, N. K.

Efremidis, and Z. Chen, Sci. Rep. 5, 12086 (2015).
21. A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot, P. Lacourt,

and J. Dudley, Appl. Phys. Lett. 101 (2012).
22. N. Mphuthi, L. Gailele, I. Litvin, A. Dudley, R. Botha, and A. Forbes,

Appl. Opt. 58, 4258 (2019).
23. J. Rosen and A. Yariv, Opt. Lett. 20, 2042 (1995).
24. V. Jarutis, A. Matijošius, P. D. Trapani, and A. Piskarskas, Opt. Lett. 34,

2129 (2009).
25. A. Matijošius, V. Jarutis, and A. Piskarskas, Opt. Express 18, 8767

(2010).
26. J. Morris, T. Cizmar, H. Dalgarno, R. Marchington, F. Gunn-Moore, and

K. Dholakia, J. Opt. 12 (2010).
27. C. Paterson and R. Smith, Opt. Commun. 124, 131 (1996).
28. C. A. Alonzo, P. J. Rodrigo, and J. Glückstad, Opt. Express 13, 1749

(2005).
29. C. Vetter, T. Eichelkraut, M. Ornigotti, and A. Szameit, Phys. Rev. Lett.

113, 183901 (2014).
30. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis,

Opt. Lett. 37, 5003 (2012).
31. J. Zhao, P. Zhang, D. Deng, J. Liu, Y. Gao, I. D. Chremmos, N. K.

Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 38, 498
(2013).

32. I. D. Chremmos and N. K. Efremidis, Phys. Rev. A 88, 063816 (2013).
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