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Abstract We theoretically and experimentally demonstrate
that a nonconventionally biased photorefractive crystal
can support hybrid nonlinearity, i.e., coexistence of self-
focusing and self-defocusing nonlinearities under an iden-
tical bias condition. It is revealed that the nonlinearity expe-
rienced by a one-dimensional (stripe) beam can be switched
between self-focusing and self-defocusing solely by chang-
ing the beam orientation. For a two-dimensional beam, the
hybrid nonlinearity leads to unusual nonlinear beam dynam-
ics with enhanced anisotropy and nonlocality.

PACS 42.65.Jx · 42.65.Hw · 42.65.Tg

1 Introduction

Light wave propagation in nonlinear media has stimulated
numerous theoretical and experimental research interests in
the past few decades [1–3]. The nonlinear material response
results in complex changes in the spatiotemporal structure of
light, leading to a variety of intriguing nonlinear phenomena
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such as light-induced scattering [4], phase conjugation [5],
and self-trapping [1–3, 6]. In fact, nearly all materials can
exhibit perceptible nonlinearity at sufficient high light in-
tensities, including crystals [7], liquids [8], and even gases
[9]. Photorefractive crystal can exhibit relatively large non-
linearity at microwatt power levels, thus it became one of
most popular materials for demonstrating nonlinear light dy-
namics during the past decades [10–12], in addition to other
types of materials such as Kerr [8], saturable [9], and non-
local [13] nonlinear materials. In general, the nonlinearities
can be divided into two categories: self-focusing and self-
defocusing nonlinearity. Although self-focusing and self-
defocusing nonlinearities can be established by changing the
polarity of the bias field in photorefractive crystals [14, 15],
it remains a challenge to find a nonlinear material to support
both nonlinearities simultaneously under an identical exper-
imental setting, namely hybrid nonlinearity.

In a conventional setting of biased photorefractive crys-
tals, the direction of the external field is set to be par-
allel to the crystalline c-axis [10–12, 14]. Therefore, the
bias condition with a bias field along an arbitrary direc-
tion is named as the nonconventionally biased (NCB) con-
dition [16–19]. In this paper, we demonstrate both in the-
ory and experiment that a NCB photorefractive crystal can
support hybrid nonlinearity. It is shown that the type of non-
linearity experienced by one-dimensional (1D) input beams
could be self-focusing or self-defocusing depending on the
beam orientation under an identical bias condition. While
for two-dimensional (2D) cases, both self-focusing and self-
defocusing nonlinearity will play a role during the nonlin-
ear beam propagations, exhibiting enhanced anisotropy and
nonlocality.
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2 Theoretical model

For a NCB photorefractive crystal, the direction of the exter-
nal bias field is no longer parallel to the crystalline c-axis.
The deformations of the index ellipsoids as well as the re-
sultant refractive index changes for such crystals can be an-
alyzed according to the linear electro-optic effect [20]. By
using a SBN crystal as an example, it can be easily obtained
that only the c-axis component of the bias field can introduce
perceptible index modulation in the crystal, and the rotations
of the c-axis and the refractive index changes introduced by
the components of the bias field perpendicular to the c-axis
can be neglected [17–21]. In addition, the bias field compo-
nent parallel to the beam propagation direction cannot result
in effective separation of the photo-excited electrons [21].
Therefore, it is reasonable to assume that the contribution of
an NCB field is identical to that of its component perpendic-
ular to the beam propagation direction. Here we consider an
elliptical light beam propagating perpendicular to the crys-
talline c-axis with a polarization direction always parallel to
the c-axis. A coordinate system is constructed by placing the
x- and y-axis along the long and short principal axes of the
elliptical beam profile, respectively, as shown in Fig. 1. The
angles of the crystalline c-axis and the external bias field
E0 with respect to the x-axis are denoted by α and β , re-
spectively. If the characteristic spatial scales are larger than
the photorefractive Debye length, and the diffusion field can
be neglected, the dimensionless equations determining the
steady state propagation of a light beam in a NCB photore-
fractive crystal can be written as [17–19, 22]
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where ∇ = x̂(∂/∂x) + ŷ(∂/∂y),B(�r)is the amplitude of
the optical field, ϕ is the light-induced electrostatic poten-
tial with the boundary condition ∇ϕ(�r → ∞) → 0, and
I = |B(�r)|2 is the normalized light intensity by the dark ir-
radiance of the crystal (including background illumination).

Fig. 1 Geometry of the
coordinate system for
nonconventionally biased
photorefractive crystals

3 One-dimensional case

When the long axis of the elliptical beam depicted in Fig. 1
becomes infinite, (1) will degenerate into a 1D problem with
∂ ln(1+ I )/∂x = 0 and ∂ϕ/∂x = 0. For a bright input beam,
we can find the 1D analytical solution for (1b) reading as
∂ϕ/∂y = |E0|I sinβ/(1 + I ). Therefore, the equation gov-
erning the nonlinear propagation of the 1D input beams be-
comes
(
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Thus, the normalized light-induced refractive index changes
can be described by �n = |E0|I sinα sinβ/(1 + I ). Obvi-
ously, the type of the nonlinearity experienced by 1D in-
put beams in NCB crystals depends on the values of α and
β , i.e., the beam orientation relative to the crystalline c-
axis and bias field. Now, we consider the nonlinearity ver-
sus the beam orientation under a fixed bias condition. Fig-
ure 2 depicts �n versus α at different (β − α). It is obvious
that, under the conventional bias condition E0//c, the crys-
tal can exhibit either a self-focusing nonlinearity (�n > 0)

at (β − α) = 0 or a self-defocusing nonlinearity (�n < 0)

at (β − α) = π , but not both for a given (β − α). While for
the NCB case at (β − α) = π/2, for which the bias field is
perpendicular to the crystalline c-axis (E0 ⊥ c), the crystal
can exhibit self-focusing or self-defocusing nonlinearity de-
pending on the beam orientation. That is to say, under such
an NCB condition, if we launch two stripe beams respec-
tively oriented at α = π/4 and −π/4 into the crystal at same
time, they will exhibit self-focusing and self-defocusing
nonlinearity simultaneously in the same crystal under an
identical bias condition (see Fig. 2). To visualize such hybrid
nonlinearity by light propagations, we solve (2) with BPM.
Figure 3 depicts the simulation results for the evolutions of
an input 1D Gaussian beam B(y) = exp(−y2/15) at differ-
ent orientations relative to E0 and c-axis, where the top to
bottom rows correspond to α = 0,−π/4, and π/4, respec-
tively, and the left and right panels correspond to the input
beams and the evolution of the light intensity profiles along

Fig. 2 1D light-induced refractive index changes (�n) versus beam
orientation (α) at different fixed bias conditions (β − α)
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Fig. 3 BPM simulations on nonlinear propagations of 1D input beams
at β−α = π/2, but α = 0 (a), −π/4 (b), and π/4 (c). Left: Input beam;
Right: Evolution of the intensity profile along the dashed line in the left
panel

the dashed lines in the left panels. In our simulations, E0 = 1
and the propagation length z = 25. As shown in Fig. 3(a),
the input beam at α = 0 cannot experience any nonlinear-
ity; therefore, the input beam undergoes linear diffraction.
From Figs. 3(a) and (b), we can see that the input beams
at α = −π/4 and α = π/4 experience self-defocusing and
self-defocusing nonlinearity, leading to enhanced diffrac-
tion and soliton-like propagation, respectively. Obviously,
the simulation results coincide with our expectations from
Fig. 2.

The experimental setup similar to that in [11] is used
for our demonstrations. An expended and collimated laser
beam (λ = 532 nm) is focused by a cylindrical lens to form
a thin stripe beam as an input beam. The cylindrical lens,
thus the beam orientation, can be rotated freely in the trans-
verse plane. A SBN:60:Ce crystal sample with dimensions
of 5 × 5 × 6.7(c) mm3 and 0.1 wt.% dopant are used. The
direction of the bias field (about 1.2 kV) is perpendicular
to the crystalline c-axis, and both the amplitude and direc-
tions of the bias field are kept unchanged during our exper-
iments. And the polarization direction of the input beam is
always kept to be parallel to the crystalline c-axis. Figure 4
displays the typical experimental results corresponding to
Fig. 3. Figures 4(a)–(c) correspond to the intensity patterns
of the probe beam at input (top) and output (bottom). It is
clear that the input beams indeed experience linear diffrac-
tion, self-defocusing, and self-focusing at different orienta-
tions under an identical bias condition. These experimen-
tal results are in good agreement with the theoretical results
presented in Figs. 2 and 3.

Fig. 4 Experimental results on nonlinear propagations of 1D input
beams at β −α = π/2, but α = 0 (a), −π/4 (b), and π/4 (c), where the
top (bottom) panels depict the intensity patterns of the input (output)
beams

4 Two-dimensional case

To solve (1b) in a 2D case, numerical procedures have to be
employed. We use a Gaussian beamB(�r) = √

2 exp[−(x2 +
y2)/16] as an input, which is depicted in Fig. 5(a). The light-
induced refractive index changes under different bias con-
ditions at E0 = 1, having the form of ∂ϕ

∂x
cosα + ∂ϕ

∂y
sinα,

are depicted in Figs. 5(b)–(d), where (b) and (c) corre-
spond to the conventional case E0//+c (α = β = 0) and
E0//−c (α = π,β = 0), respectively, and (d) corresponds
to the typical NCB condition E0 ⊥ c (α = 0, β = π/2). Fig-
ure 5(e) describes the linearly diffracted output beam pat-
tern with a normalized propagation length z = 15. While
the nonlinear output beam patterns under different bias
conditions corresponding to Figs. 5(b)–(d) are depicted in
Figs. 5(f)–(h), respectively. Figure 5(i) shows the FWHMs
of the beam profiles along the dashed lines in Figs. 5(e)
and (h) versus the propagation length z. From Fig. 5, we
can see that different bias conditions will cause different in-
dex changes as well as various nonlinear beam propagations.
Under conventional bias conditions, although the peripheral
regions of the index changes possess opposite sign with re-
spect to the central part, the nonlinearity experienced by the
input beam is mainly determined by the index changes of
the central part, resulting in self-focusing in Fig. 5(f) and
self-defocusing in Fig. 5(g). While under the NCB condi-
tion at E0 ⊥ c, the distribution of the index changes be-
comes very distinct in comparison with the conventional
ones. From Fig. 5(d), it can be seen that the index change
at the center of the input beam is zero, and the maxima of
the index changes occur at the positions far away from the
beam center, representing a typical nonlocality. More inter-
estingly, along different diagonal directions across the beam
center, the index changes always possess identical sign, but
the sign and the maximum index changes can be dramat-
ically different in different directions, representing an en-
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Fig. 5 Numerical simulations
on 2D light-induced refractive
index changes and nonlinear
beam propagation, where (a) is
the input beam, (b)–(d) are
corresponding to the refractive
index changes induced by (a)
under different bias conditions
indicated by the arrows, (e) is
the output beam pattern after
linear propagation,
(f)–(h) depict the nonlinear
output beam patterns under the
same bias conditions with that
in (b)–(d), and (j) depicts the
FWHMs of the beams versus
propagation length z along the
dashed lines shown in (e)
and (h)

Fig. 6 Experimental results on
2D light-induced refractive
index changes and nonlinear
beam propagations. (a) and (b)
depict the 2D and 3D displays
of the measured refractive index
changes at E0 ⊥ c,
corresponding to the center part
of Fig. 5(d). (c)–(g) are the
experimental results for beam
propagations, where (c) is the
input beam, and (d)–(g) are the
linear and nonlinear output
beam patterns corresponding to
Figs. 5(e)–(h), respectively

hanced anisotropy. We can expect such unique features re-
sult in novel nonlinear beam propagation dynamics. From
Figs. 5(h) and (i), it is clear that the input beam experiences
self-focusing and self-defocusing at the same time, i.e., hy-
brid nonlinearity, leading to an elliptical output beam pat-
tern.

To perform experimental demonstrations in a SBN crys-
tal, we first directly visualize the index changes induced by
a Gaussian beam at E0 ⊥ c by employing digital holography.
The experimental setup is as same as that used in [19, 23].

The 2D and 3D display of the measured index changes are
depicted in Figs. 6(a) and (b), respectively. For observing
nonlinear beam propagation, we just replace the cylindrical
lens with a circular lens in the setup for the 1D experiment
described in Sect. 2. Figures 6(c)–(g) show the 2D exper-
imental results, where (c) is the input beam pattern, and
(d)–(g) are the linear and nonlinear output beam patterns
corresponding to Figs. 5(e)–(h), respectively. By comparing
Figs. 6 with 5, it is clear that our experimental results are in
good agreement with the theoretical predictions.
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5 Conclusions

We have demonstrated that a NCB photorefractive crystal
can support hybrid nonlinearity. A theoretical model has
been established to describe the nonlinear beam propaga-
tion in NCB photorefractive crystals. It has been shown
that, for one-dimensional cases, the exhibited nonlinear-
ity of the NCB photorefractive crystal depends on the ori-
entation of the input beam. Solely by changing the in-
put beam orientation, a switch between nonlinear self-
focusing and self-defocusing can be obtained. While for
two-dimensional cases, the hybrid nonlinearity will result
in highly anisotropic and nonlocal refractive index mod-
ulations. Therefore, the input beam can experience self-
focusing and self-defocusing nonlinearities at the same time,
leading to an elliptical output beam profile. The experi-
mental results agree well with our theoretical predictions.
It should be noted that, in our previous work reported in
[18, 19], we have focused on the novel soliton states in dis-
crete regimes under NCB conditions, where the periodic na-
ture of the induced photonic lattices plays a nontrivial role.
However, the studies on the hybrid nonlinearity in homoge-
neous bulk samples should be of fundamental and general
interest. Although we have studied elliptical solitons under
NCB conditions in [17], the relation between the enhanced
anisotropy/nonlocality and the hybrid nonlinearity was not
studied in detail. Here we highlight the unique properties
of the hybrid nonlinearity supported by the NCB photore-
fractive crystals. Such hybrid nonlinearity along with the
enhanced anisotropy and nonlocality provide a good oppor-
tunity to explore novel nonlinear dynamics in continuum
as well as discrete regimes, e.g., wave mixing, vortex evo-
lution, optically induced soliton transitions from different
bandgap, and 2D novel lattice soliton states, etc. Moreover,
the novel concept of hybrid nonlinearity may have impacts
on other nonlinear system beyond optics.
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