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Tunable self-shifting Bloch modes in anisotropic
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We study controllable self-shifting Bloch modes in anisotropic hexagonal photonic lattices. The shifting results from
a deformed band structure due to deformation of the index distribution in each unit cell. By reconfiguration of
the index profile of the unit cell, the direction in which the Bloch modes move can be controlled. Our theoretical
predictions are experimentally demonstrated in hexagonal lattices optically induced in an anisotropic nonlinear
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crystal.
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Wave propagation in optical periodic structures has
received considerable attention in the past decade. In
a typical photonic lattice, the ability to manipulate light
relies on the photonic bandgap design [1,2]. Many inter-
esting phenomena have been observed, such as anoma-
lous diffraction and refraction [3], conical diffraction
[4,5], and symmetry-breaking diffraction [6]. According
to the Floquet—Bloch theorem, beam propagation in
photonic lattices can be analyzed from spatially extended
Bloch waves as a complete orthogonal set of allowed ei-
genmodes of the lattice [2]. In uniform photonic lattices,
localized modes characterized by Bloch waves are cru-
cial for understanding the formation of spatial lattice so-
litons [7-12]. Recently, many intriguing linear and
nonlinear phenomena have been reported in deformed
or anisotropic lattices [5,12]. In this letter, we demon-
strate tunable self-shifting Bloch modes mediated by de-
formation of hexagonal lattices. We show that the Bloch
modes can move laterally along any direction as deter-
mined by the orientation of the anisotropic lattice poten-
tial in the unit cell. Our results represent a convenient
setting for studying fundamental wave dynamics in ani-
sotropic periodic structures.

We start our analysis with the normalized Schrodinger
equation describing electromagnetic wave propagation
in linear media, where the periodic refractive index
potential can be introduced. Under the slowly varying
envelope approximation, the paraxial propagation along
the z-axis for a monochromatic wave ¥ in the photonic
lattice is governed by
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where W denotes the complex amplitude of the probe
wave, Vi = Oy + 0y, and Any is the periodic potential
of the photonic lattice. Here we assume the index poten-
tial forms a hexagonal lattice (with lattice period d) with
primitive axes a; =di and a, = 0.5d(i + /3j), as
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depicted in the left panel of Fig. 1(a). The transmission
modes can be solved in the form ¥ = b(x, y) exp(ifz),
where g is the propagation constant and b(x,y) is the
Bloch wave. For the Bloch wave vector k = k,i + k,j, the
corresponding Bloch wave b(x, y) and propagation con-
stant f(k) (bandgap structure) can be obtained from
Eq. (1). The first transmission band of a perfect hexago-
nal lattice is shown in the middle panel of Fig. 1(a), where
six threefold-symmetric points at the bottom of the band
are mapped out. Among these six points, there exist two
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Fig. 1. (Color online) Diffraction curves of the first band in
(a) perfect and (b), (c) anisotropic hexagonal lattices. Left, lat-
tice structures; middle, diffraction curves; right, local distribu-
tions of the first band around the M-point. Insets show the local
diffraction curves around the M-point.
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degenerate modes associated with inversion-symmetry
points M and M’ (Fig. 1(a), circles and triangles, respec-
tively). Here we focus on one of them to simplify the
discussion.

The light refraction in the photonic lattice can be de-
termined from y = d8/dk, which is the local slope of the
diffraction curve. In a perfect hexagonal lattice, the point
M is located at the bottom (minimum point) of the first
band (see Fig. 1(a)), and the refraction of the correspond-
ing Bloch mode y = 0, i.e., the light propagates along the
lattice waveguide without lateral shifting. This is a com-
mon property that most Bloch waves of high-symmetry
points share. However, in anisotropic hexagonal lattices
(e.g., elliptical index distribution in the unit cell), the
diffraction curves are deformed (as shown in Figs. 1(b)
and 1(c)) and the M-point is no longer the minimum,
resulting in a nonzero y. This indicates that the corre-
sponding Bloch modes should move laterally during
propagation. For an elliptical lattice potential (ellipticity
ratio of 0.5) with major axis oriented in the vertical direc-
tion [Fig. 1(b)], the minimum point shifts aside to the
right of the M-point, causing the Bloch waves to move
toward the positive w-axis (y, = 9/0k, <0, y, = 9dp/
ok, = 0). Likewise, for an elliptical potential with major
axis oriented in the horizontal direction (Fig. 1(c)), the
minimum shifts to the left of the M-point and the Bloch
waves move toward the negative x-axis (y, > 0, y, = 0).

It is worth mentioning that the deviations of the mini-
mum points of transmission bands as represented above
never happen in a lattice belonging to an orthorhombic
system (e.g., a square lattice). In an orthorhombic sys-
tem, because of the inversion and translational symmetry
in k-space, the local diffraction curves around the high-
symmetry points of the Brillouin zone always remain
inversion-symmetric, even in an anisotropic lattice. This
makes the high-symmetry points always stay at the max-
imum or minimum points (i.e., the zero-refraction posi-
tions) of the diffraction curves, and the corresponding
Bloch waves cannot move transversely. Thus, the moving
of the Bloch waves is a phenomenon particular to hex-
agonal lattices and can be considered a type of symme-
try-breaking propagation in addition to that in [6].

The Bloch waves corresponding to the M-point
in Figs. 1(a)-1(c) are calculated as shown in the top of
Figs. 2(a)-2(c), respectively, where the left and right pa-
nels are amplitude and phase distributions, respectively.
To make clear how the energies flow, it is necessary to
analyze the transverse Poynting vector S [x ¢(bV | b* —
b*V | b)] associated with the Bloch waves, as depicted
by the arrows in the bottom of Fig. 2. For a Bloch wave
at the M-point of a perfect hexagonal lattice [Fig. 2(a)],
every three adjacent wave humps form a vortex of unit
topological charge, among which light energy flows
evenly and maintains total balance. However, in the ani-
sotropic hexagonal lattices, the balance of energy flow of
the Bloch wave is broken [10] and the light energy of
the Bloch wave flows laterally on the whole. It can be
seen that the Bloch waves in Figs. 2(b) and 2(c) tend
to move in opposite directions (rightward and leftward,
respectively), as expected above. These Bloch waves
are self-shifting modes without need of any additional
“forces.”
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Fig. 2. (Color online) Bloch waves at the M-point correspond-
ing to the lattice structures in Figs. 1(a)-1(c). Top, amplitude
and phase distributions; bottom, transverse Poynting vectors
of the Bloch waves.

The self-shifting modes are closely related to the ori-
entations of the anisotropic lattice potential, which is
defined as the angle 6 between the long axis of the ellip-
tical potential and the x-axis, as depicted in Fig. 3(a). To
quantitatively analyze the self-shifting property, a nor-
malized variable F(6) is introduced to characterize the
total energy flow within the area of a single primitive cell,

defined as F(0) = [JenS) (0)dxdy/| [JoerS L (O)drdy] ..
The amplitude and phase angle of F(6), which respec-
tively represent the quantity and direction of the self-
shifting, are calculated with the continuous variation
of 6 from 0° to 180° as shown in Fig. 3(b), where the solid
and dashed lines correspond to |F| and arg (F), respec-

tively. The result shows that the shift direction of the
M-point Bloch wave varies nearly linearly with the orien-
tation of the lattice potential, with a periodic disturbance.
Meanwhile, the displacement |F| varies periodically be-
cause of the sixfold symmetry of the hexagonal lattice,
with the maximum and minimum (their ratio is about
1:0.55) at 8 = 0° (60°, 120°) and 30° (90°, 150°), respec-
tively. In addition, the lattice potential and its ellipticity
ratio can affect the shift magnitude rather than the shift
direction, and a higher potential or a more intense aniso-
tropy leads to stronger mobility of the Bloch modes. As a
result, the self-shifting of the Bloch modes can be
controlled by the anisotropy of the lattice structure.

It should be especially noted that these shiftings of the
infinitely extended, z-independent Bloch waves cannot

Fig. 3. (Color online) (a) Geometry of a typical anisotropic
hexagonal lattice. (b) Displacement and direction of the shifting
of the Bloch wave versus 6. (¢) Input beam modulated with the
M-point Bloch wave with its spectrum inserted. (d)—(g) Propa-
gation in lattices with 6 = 0°, 45°, 90°, and 135°, respectively,
with the input sites indicated by plus signs.
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Fig. 4. (Color online) Experimental observation of the self-
shifting Bloch modes in light-induced hexagonal lattices.
(a) Geometry of the bias condition. (b) Input profile (top)
and linear output without lattice (bottom); the inset shows
the k-space spectrum. (c)-(e) Output beam profiles (bottom)
in the anisotropic hexagonal lattices (top) under different bias
conditions; insets depict the corresponding calculated lattice
index profiles.

be observed directly. In order to visualize the self-shifting
of the Bloch modes, the interference field of three planar
waves with a circular Gaussian envelope is utilized as a
probe beam to match the multivortex mode at the
M-point, as shown in Fig. 3(c). The excited output pro-
files in the anisotropic lattices with 6 = 0°, 45°, 90°,
and 135° are depicted in Figs. 3(d)-3(g), respectively.
These results represent clearly the self-shifting proper-
ties of M-point Bloch modes, and the shift direction is
determined by the orientation of the anisotropic lattice
potential as expected according to Fig. 3(b). Further-
more, the output profiles deviate from the triangular
shape as a result of the anisotropic local diffraction at
the M-point (see Figs. 1(b) and 1(c), right).

To demonstrate the self-shifting modes experimentally,
anisotropic hexagonal lattices were optically induced
[3,12] in a strontium barium niobate crystal of size of
5 mm x 5(c¢) mm x 10 mm. Because of the intrinsic aniso-
tropic nonlinearity [13, 14], the light-induced photonic
lattices possess high anisotropy, which can be tuned by
the bias condition [3,11,12]. Under the illumination of the
hexagonal lattice beam [see the background of Fig. 4(a)],
we applied the externally biased voltage () parallel to
the c-axis and rotated the photorefractive crystal to estab-
lish anisotropic hexagonal lattices with different orienta-
tions, as shown in Fig. 4(a). The index distributions of the
lattices are measured with digital holography [15, 16], as
shown in the top of Figs. 4(c)—4(e). To compare with the
results in Figs. 3(d), 3(f), and 3(e), the angles between E|
(or the c-axis) and the x-axis in Figs. 4(c)—4(e) are set to
90°, 0°, and 135°, respectively. The corresponding lattice
index profiles are calculated with the anisotropic model
[3,10-12], as shown in the insets of Figs. 4(c)—4(e). The
probe multivortex beam is constructed by the interfer-
ence of three beams with a method similar to [10], as
shown in the top of Fig. 4(b). The spectrum of the probe
beam is adjusted to coincide with that of the lattice beam
(see Fig. 4(b), inset) to guarantee its on-axis propagation.
Without the lattice, the probe beam evolves into three se-
parate spots, with their center marked by a plus sign in the
bottom of Fig. 4(b). Hence, the excited Bloch wave hasno

lateral momentum. In the presence of anisotropic hexago-
nal lattices, after the excitation of the M-point Bloch
modes, the probe beam moves laterally (i.e., with nonzero
transverse momentum). The directions of movement are
as expected. Apparently, in our experiment the mobility of
the Bloch modes can be easily controlled by changing the
bias condition. In addition, the output beam profiles
shrink slightly in comparison with those at input as a re-
sult of anomalous diffraction of the probe beam [3].

To summarize, we have demonstrated controllable
self-shifting Bloch modes in anisotropic hexagonal lat-
tices. Because of the anisotropic lattice potential, the
minimum points of the first transmission band (band
edge) deviate from the high-symmetry M-points, leading
to the shifting of the M-point Bloch modes. The shift di-
rection is determined by the orientation rather than the
index modulation, as well as by the ellipticity of the ani-
sotropic lattice potential. The tunable self-shifting modes
have been experimentally observed in optically induced
hexagonal lattices. These wave phenomena are expected
to occur in other periodic systems with similar symmetry.
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