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With an exact recursive approach, we study photonic crystal
fibers and resonators with topological features induced by
Aubry–Andre–Harper cladding modulation. We find non-
trivial gaps and edge states at the interface between regions
with different topological invariants. These structures show
topological protection against symmetry-preserving local
perturbations that do not close the gap and sustain strong
field localization and energy concentration at a given radial
distance. As topological light guiding and trapping devices,
they may bring about many opportunities for both funda-
mentals and applications unachievable with conventional
devices. © 2020 Optical Society of America

https://doi.org/10.1364/OL.387043

The seminal papers on analogs of quantum Hall effect in optics
[1,2] boosted the research on photonic topological insulators,
described by magnetic-like Hamiltonians [3–7]. They hold
great promises for applications such as topological lasers [8–11],
protected frequency combs [12], and topological nanostruc-
tures [13,14] for quantum information processing [15–17].
Edge states lying in the bulk gaps are the leading ingredient in
these applications. Localized at the boundary between regions
with diverse topological invariants [18] as the first Chern
number of the bands—or the winding number of the gaps
[19]—they are robust against backscattering from impurities.
Recent developments rely on machine learning techniques to
design topological structures [20,21]. A possible way to get
nontrivial photonic topological phases is to employ synthetic
dimensions [22–25]. An example is Aubry–Andre–Harper
(AAH) modulation [26–28] of optical lattice parameters. One-
dimensional (1D) systems with synthetic dimensions have the
same topological features as their 2D periodic ancestor lattices
[29,30]. However, the application of synthetic dimensions has
so far been limited to linear geometries. The use of AAH and
similar strategies for synthetic dimensions in circular, elliptical,
or more complex coordinates is unexplored. In this Letter, we
introduce the concept of topological photonic crystal fibers
(PCFs) and resonators that exploit topological features due to

AAH modulation in cylindrical symmetry to guide and trap
electromagnetic radiation on edge states. These new optical
devices support tightly confined modes in the radial direc-
tion, protected with respect to radial disorder. Conventional
waveguides and resonators exploit either total internal reflection
(TIR), with a solid core surrounded by a lower refractive index
medium, or photonic crystal claddings [31–33] to guide light
in a hollow core by Bragg reflection. Advanced PCFs enable
control of the angular momentum [34], induce optomechanical
nonlinearities [35], and may guide dielectric particles by radi-
ation pressure [36]. The photonic bandgap mechanism allows
annular Bragg resonators [37]. Reconfigurable index structures
are designed by Bessel photonic lattices in bulk crystals [38],
as well as one-way fiber modes at microwave frequencies [39],
backscattering immune, in a 3D magnetic Weyl photonic
crystal. Our proposal of a cylindrical topological insulator, sus-
taining edge states, is a recipe for the cladding of PCFs to obtain
strongly localized fields, topologically protected. Indeed, in our
configuration, the core–cladding interface acts as the boundary
between two distinct topological phases: a trivial one, the core,
and a topological one, the cladding with radiative edge states
[30]. This boundary can also be attained inside the cladding if
a radial distance ρn value divides it into two substructures with
different modulations.

The structure considered has a core of dielectric constant εc
and radius ρ1 and a cladding given by a sequence of two homo-
geneous layers A and B characterized by dielectric functions εa
and εb . The center positions of the A layers, s a wide, are given
by ρ A

n = do [n + ηδH
n ], where δH

n = cos(2πγ n + φ) is Harper
modulation [26], with γ = p/q , and p and q are coprime
integer numbers [29]; η controls the modulation strength. The
cladding, in the ρ direction, is a periodic structure of period
d = qdo , where do is the period of the unmodulated structure
(η= 0). The phase φ, the topological parameter, varying in
(0, 2π ), adiabatically deforms the system and accounts for the
momentum along the second geometrical dimension of the 2D
ancestor lattice [30]. The mapping 1D→ 2D allows introduc-
ing the topological indices. The 2D system shows a broken time
inversion symmetry that can be interpreted as the presence of an
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effective or “synthetic” magnetic field. This imposes conditions
on the unit cell of the structure that must lack an inversion cen-
ter in order to have nontrivial topological invariants and edge
states. This requires at least three-layer A in the unit cell, and a
minimal model would have p = 1 and q = 3. For this annu-
lar regions sequence, the interface positions are ρ j = ρ

′

j + δ,

where ρ ′j = ρ
A
b

j+1
2 c
+ (−1) j−2b j−1

2 cs a/2, δ = ρ1 − ρ
′
1, and

bxc is the integer part of x . Different methods for the analysis
of structured claddings have been proposed in the literature,
ranging from approximated ones such as the method using
asymptotic approximations of Bessel functions [40], to exact
ones such as the standard transfer matrix method [31]. We
apply an exact recursive approach [41] to analyze the bandgap
structure and design the resonator, since casting the problem
in a 2× 2 matrix form for the longitudinal components of the
electric and magnetic fields allows to obtain, in a straightforward
way, the complex mode frequencies. This recursive formalism
enables us to find the modal distribution in the case of an arbi-
trary arrangement of annular concentric regions and so to study
the effects of shallow disorder and verify the topological protec-
tion. Figure 1 schematically illustrates (a) the topological PCF,
(b) the topological optical resonator, and (c) their radial index
profile. In these systems, the permittivity depends only on the
radial coordinate: ε(ρ)= ε j for ρ j−1 <ρ < ρ j , with ρ0 = 0.
In cylindrical coordinates, for waves traveling in the z direction
with propagation constant β, every field component has the
formψ(ρ, ϑ, z, t)=ψ(ρ, ϑ)e i(βz−ωt), where ω is the angular
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Fig. 1. (a) Topological PCF, (b) optical resonator, and (c) dielectric
function profile for a cladding with γ = 1/3, taking on the val-
ues nc for the core, and na , nb for the cladding. Asymptotic bands
for (d) unmodulated and (e) modulated cladding with φ = π/6,
η= 0.2/π , na = 4.6 (tellurium), nb = 1.6 (polystyrene), s a = 0.33do ,
and s b = 0.67do ; nc = 1. Filled regions are TE (orange) and TM (blue)
propagating modes.

frequency. In each homogeneous cylindrical layer, the longitudi-
nal field components E j

z (ρ, ϑ) and H j
z (ρ, ϑ) are the solutions

to [ ∂
2

∂ρ2 +
1
ρ
∂
∂ρ
+ (k2

j −
`2

ρ2 )]X
j
z (ρ, ϑ)= 0, where X = E , H,

l is an integer representing the angular modal number, and
k2

j =
ω2

c 2 ε j − β
2, with c the speed of light. We choose, as inde-

pendent solutions, the Bessel J`(k jρ) and Hankel H(1)
` (k jρ)

functions of the first kind so that inside each homogeneous
cylindrical layer j , the field can be written as the superposition of
an outgoing wave H(1)

` (k jρ) and a standing wave J`(k jρ) [41]:

[E j
z , H j

z ]
T
= [H(1)

` (k jρ)
↔

I + J`(k jρ)
↔̃

R j , j+1]Ea j . Here Ea j ≡

[e j z, h j z]
T determines the relative amplitudes of the elec-

tric and magnetic field components, and
↔̃

R j , j+1, giving
the relation between the electric and magnetic field com-
ponents of the inward and outward propagating fields,
is a generalized reflection matrix. Recursive relations can
be obtained for both the reflection matrices and the field
amplitudes [41].

The generalized reflection matrix,
↔̃

R j , j+1, includes the effects
of reflections and transmissions at all the layers beyond the j -th
one. With this equation and starting from the outermost, one
can find the reflection and transmission matrices for all the N
layers; then, starting from the innermost layer, the field can be
recursively described in the whole structure. The boundary
conditions for the fields at ρ = ρ j determine the reflection

and transmission matrices
↔

R j , j+1 and
↔

T j , j+1. Guided modes,
defined as the nontrivial solutions that exist without the need for
an external excitation, can be found requiring that the reflection
matrix have an infinite determinant. The guidance condition,
given for a two-layer structure in [42], for an N-layer fiber can
be obtained from the generalized reflection matrix, and reads

det(
↔

I −
↔

R2,1

↔̃

R2,3)≡ f (ω, β)= 0. Its solutions, giving rise
to a set of complex (ω, β) states with either real frequency or
real wave vector, are the allowed modes of the fiber. Unlike
Bragg guiding fibers, the core–cladding interface acts as the
boundary between two distinct topological phases: a trivial core
and a topological cladding with radiative edge states [30], here
described in the complex ω representation [43], where the real
part is the modal resonance frequency while the imaginary part
is the decay rate accounting for the loss [44]. This description
is equivalent [45] to the one with real frequency and complex
propagation constant β, with the imaginary part of β providing
the radiative decay of the leaky modes [31,46].

Due to the radial periodic cladding structuring, our topologi-
cal PCF shows a gapped spectrum. It cannot be analyzed in the
framework of the Bloch theorem since, for radially depending
dielectric functions, the operator− 1

ρε(ρ)
∂
∂ρ

ρ

µ(ρ)
∂
∂ρ
+

`2

ρ2ε(ρ)µ(ρ)

is not invariant under translations. However, as detailed in Ref.
[42], one can always identify a ρn value such that for ρ > ρn ,
the structure shows gaps converging to that of a planar structure
with the same Harper modulation.

For a cladding consisting of alternating layers of na and nb
refractive indices, Figs. 1(d) and 1(e) show the one-dimensional
gaps and bands in the asymptotic limit: (d) is the case of a peri-
odic unmodulated cladding, while (e) includes the modulation.
This modulation adds additional gaps where we expect to
find guided modes as well as edge states; the gap dependence
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Fig. 2. (a) TE asymptotic bands for a modulated cladding as a func-
tion of χ and β. Phase of the reflection coefficient for the three gaps for
which the winding numbersw are: (b)−1, (c) 1, and (d) 0.

on the shifted phase χ = φ − π
6 is shown in Fig. 2(a) for TE

polarization, in the dimensionless energy range (0.41,0.58).
Both plots in Figs. 1 and 2 are obtained through the quantity
2ξ =−Tr[T(ω, β, χ)], involving the trace of the transfer
matrix T(ω, β, χ) in the asymptotic limit, allowing one to
locate the cladding gaps in the regions where ξ 2 > 2. To take
into account the finite value of the core radius ρ1, affecting the
actual position of the allowed modes, gaps (|R̃1,2|

2
= 1) and

bands (|R̃1,2|
2 < 1) of the system can be equally well located

through the reflectivity modulus map |R̃1,2(ω, β, χ)|
2. The

generalized reflectivity at the core–cladding interface also allows
to define the nature of the gaps [43]. In Figs. 2(b)–2(d), we show,
for the three different gaps of Fig. 2(a), the winding numbers
wi of the reflection coefficient, i.e., the reflectivity extra phase
acquired when χ varies in the range (−π, π) while ω remains
inside the gap. A nonzero winding number corresponds to a
topologically nontrivial sample and is tied to the existence of
topological edge states [47–49]. So, unlike the upper one, the
two lower gaps are nontrivial. Moreover, through the reflectivity
poles, edge state dispersions can be calculated. The one in the
lower gap is shown in Fig. 3(a) as a blue curve, bridging the
gap in a given (χ, β) range. Figs. 3(b) and 3(c) show the TE
reflectivity map in the plane [(Re(ω), χ ) (b) and (Re(ω), β)
(c)] for a structure with the same parameters as Fig. 2 but a finite
core radius ρ1 = 2do . In this figure, topological edge states are

clearly seen: their real part Re(ω) is shown as a dotted curve,
while Im(ω)≈ 10−2Re(ω). We notice that, as they live in the
gap’s spectrum, edge states cannot be removed or added unless
a topological transition of the bulk bands happens when the gap
closes. This gives them a topological protection against radial
disorder. We verify this hallmark property by introducing a
randomized perturbation of the A layers’ center positions. In
this case, ρ A

n = do (n + η(δH
n + σξn)), where ξn are random

variables chosen in the range (−1, 1), while σ is the disorder
strength. Figure 3(d) shows the frequency variation of a specific
mode for two realizations of increasing random disorder; it
proves that it is nearly unaffected, even for large perturbations
(σ ' 0.5). The different behavior for the two realizations is due
mainly to the lattice pitch variation with disorder: for the orange
(blue) curve, the lattice pitch increases (decreases). As a conse-
quence, the whole spectrum shifts to higher (lower) energies for
decreasing (increasing) pitch. Curves for different core radius
values show unnoticeable differences since the mode frequencies
depend mainly on the cladding features. The topological PCF
preserves the time-inversion symmetry, so in the z direction,
light guiding is not unidirectional. However, within the litera-
ture on topological waveguides, backscattering in the z direction
can be safely neglected due to the absence of strong scatterers
capable of inducing such a large momentum change. In our case,
what is important is the robustness to radial perturbations and
imperfections, which are the main source of the (low) losses in
PCFs. Such losses accumulate slowly during propagation along
the fiber due to disorder-induced coupling between the core and
cladding exterior, which our novel design addresses.

With respect to the modulation phase, the dispersion rela-
tions are anyway nonreciprocal with the positive/negative
χ values corresponding to states localized at the left or right
boundary of the cladding. Finally, the normalized E-field
pattern, Fig. 4, confirms the strong localization at the core–
cladding interface, unlike TIR or bandgap fibers. This
localization of the edge mode shields the cladding from the
absorption of guided light.

In the study of band structures in a cylindrical geometry
with AAH modulation of the refractive index, we demonstrate,
through an exact recursive approach, the existence of edge
modes with topological dispersion in the gapped spectrum,
robust to disorder and strongly localized in the radial direction.
While there is no “synthetic interface” in our system, the phase
χ plays a special role because it parameterizes a topologically
nontrivial family of fiber designs. Namely, as χ is varied, the
nontrivial topological invariants of the family guarantee an edge
state will be pumped through the bulk band gap. Importantly,
this means there is an optimal χ hosting a mid-gap mode with

β(2π/do)
β(2π/do)

χ(π)

χ(π)

edge state

Fig. 3. TE reflectivity map and edge states (a) in the asymptotic limit and the exact solution for (b) β = 0.1(2π/do ) and (c) χ = 0.8π . (b),
(c) Finite cladding with 13 unit cells. (d) Edge mode for β = 0.1(2π/do ) and χ = 0.8π as a function of the disorder strength for two realizations: the
orange (blue) curve is for a system with an increasing (decreasing) normalized period, d/do .
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Fig. 4. TE, `= 0, edge mode normalized field profile forχ = 0.8π ,
β = 0.1(2π/do ), andω(2πc/do )= 0.452+ 0.6 ∗ 10−2i . Dashed red
lines mark the core region boundaries.

strongest localization and therefore minimizing losses due to
effects such as surface roughness of the cladding. Thus, the
topology of the synthetic dimension can be used to system-
atically determine which families of fiber designs can support
optimally localized cladding modes. Optical fibers with topo-
logically protected states open many new perspectives in the
transmission of information for classical and quantum applica-
tions. The resilience to external perturbations enables low-loss
transport, quantum transport of non-classical states, and low-
threshold topological fiber lasers. Future directions also include
the study of topological eigenmodes with angular momentum
for multilevel signals, the study of the interplay between the
Berry phase in twisted fibers and Chern numbers in synthetic
dimensions, topological ring resonators for frequency comb
generation, and linear and nonlinear metasurfaces by single and
coupled resonators with radial Harper modulations. Hollow-
core fibers can accelerate dielectric and metallic particles; the
way topological physics alters radiation pressure and related
phenomena—as optomechanical nonlinearities—is a new
research direction. We envisage many new physical phenomena
when considering multimodal optical fibers with topologically
protected states.
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