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Abstract: We demonstrate self-trapping and rotation of higher-band dipole 
and quadruple-like gap solitons by single-site excitation in a 
two-dimensional square photonic lattice under self-focusing nonlinearity. 
Experimental results show that the second-band dipole gap solitons reside in 
the first photonic (Bragg reflection) gap, whereas the quadruple-like gap 
solitons are formed in an even higher photonic gap, resulting from modes of 
the third-band. Moreover, both dipole and quadruple-like gap solitons exhibit 
dynamical rotation around the lattice principle axes and the direction of 
rotation is changing periodically during propagation, provided that they are 
excited under appropriate initial conditions. In the latter case, the nonlinear 
rotation is accompanied by periodic transitions between quadruple and 
doubly-charged vortex states. Our numerical simulations find good 
agreement with the experimental observations. 
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1. Introduction 

Optical spatial lattice solitons, localized structures resulting from the exact balance between 
periodicity and nonlinearity in photonic lattices, have attracted a great deal of interest in the past 
dozen years [1–4]. Different types of lattice solitons including discrete solitons, band gap 
solitons and even higher-band gap solitons have been extensively studied both theoretically and 
experimentally [5–14]. More specifically, in some cases discrete lattice solitons can be formed 
in the semi-infinite gap near the top of the first Bloch band under a self-focusing nonlinearity. 
In some other cases, fundamental gap solitons residing in the first Bragg reflection (photonic) 
gap can be excited either from modes of the first band through balance between anomalous 
diffraction and defocusing nonlinearity or from modes of the second band through balance 
between normal diffraction and focusing nonlinearity. Thus far, lattice solitons located in 
higher photonic band gap are only experimentally observed in one-dimensional (1D) 
defocusing photonic lattices [15,16]. In two-dimensional (2D) lattices, on the other hand, 
higher-gap solitons have been theoretically proposed [17] but not experimentally realized to our 
knowledge, most probably due to the difficulties in opening the higher-band gaps and exciting 
the pure modes from the higher-bands in 2D photonic lattices. Moreover, many interesting 
features such as rotation of dipole gap solitons [18] are expected to occur only in higher 
dimensions. Recently, we have also predicated the formation and rotation of higher-band 
quadruple-like solitons residing in the second Bragg reflection gap of the 2D square lattices 
[19], but experimental demonstration of such higher-band gap solitons remains to be a 
challenge. 

In this paper, we present the experimental demonstration of self-trapping and rotation of 
second-band dipole and third-band quadruple-like lattice solitons in 2D photonic lattices 
induced with a self-focusing nonlinearity. The input dipole or quadruple beam with desired 
phase structure is launched at single lattice site. In the absence of nonlinearity, the dipole 
(quadruple) beam exhibits linear discrete diffraction which characterizes the feature of the 
corresponding second (third) band Bloch modes. Under appropriate conditions of nonlinearity, 
the probe beam self-traps into a gap soliton with its spatial spectrum concentrated on the 
corresponding high-symmetry points in the Brillouin Zone (BZ). Specifically, the dipole gap 
soliton forms in the first Bragg reflection gap, while the quadruple-like soliton forms in the 
second Bragg reflection gap. Furthermore, different from previously observed dipole soliton 
rotation in anisotropic lattices [18], here we demonstrate the rotation of dipole gap solitons in a 
2D square lattice without intentionally introducing the anisotropy to the lattice. Importantly, the 
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rotation of localized quadruple states can be experimentally observed only by changing the 
initial orientation of the incident beams relative to the symmetry axes of the lattice. Our 
experimental observations are corroborated by numerical results, representing another example 
of continued success of investigating spatial beam dynamics with the platform of optically 
induced photonic lattices. 

2. Experimental methods 

Our experimental setup is shown in Fig. 1, which is similar to those used earlier for observation 
of discrete dipole or vector solitons [20,21], except that we now use a spatial light modulator 
(SLM) to generate the probe beam. A laser beam (532nm) is divided into three parts (shown 
with three red arrows): the lattice-forming beam, the probe beam and the reference beam. In the 
first path (going through the amplitude mask), a partially spatially incoherent beam is generated 
by using a rotating diffuser. A biased photorefractive crystal (SBN: 5mm × 10mm × 5mm) is 
employed to provide a self-focusing nonlinearity. To generate a 2D square lattice, we use an 
amplitude mask to spatially modulate the otherwise uniform beam after the diffuser. The lattice 
beam is ordinarily polarized, which remains invariant during propagation through the crystal. 
The second path is the probe beam, which is extraordinarily polarized and sent into the SLM 
imprinted with desired phase information for generation of dipole and quadruple beams. Taking 
advantage of the photorefractive non-instantaneous response, we monitor the linear and 
nonlinear transport of the probe beam simply by recording its instantaneous (before nonlinear 
self-action) and steady-state (after self-action) output patterns. The input and output images are 
taken by a CCD camera (CCD-1) and their phase profiles are monitored by interfering them 
with a tilted broad plane wave (the third path of the laser beam). In addition, the Fourier 
spectrum of the output beams can be visualized by another CCD camera (CCD-2) when needed. 

 

Fig. 1. Experimental setup: (P)BS, (polarizing) beam splitter; ID, iris diaphragm; M, mirror; 
SBN, strontium barium niobate crystal; SLM, phase-only spatial light modulator; AM, 
amplitude mask; PM, phase masks displayed in SLM to generate out-of phase dipole (left) and 
quadruple (right) beams. Red arrows 1, 2, 3 indicate the paths of the lattice-inducing beam, the 
probe beam and the reference beam, respectively. 

As mentioned, the incident dipole and quadruple beams have nonuniform phase structures, 
i.e., for the dipole beam, the two humps are out-of phase, and for the quadruple beam, the 
diagonal humps are in-phase, but the adjacent humps have a π-phase difference. The 
experimental realization of such probe beams are achieved by using a phase-only SLM encoded 
with numerically calculated phase mask as shown in Fig. 1. After modulation by the phase 
mask, a broad Gaussian beam is transformed into a dipole beam with two peaks or a quadruple 
beam with four peaks. Note that different from prior experiments on discrete solitons [20,21], in 
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all our current experiments, the probe beam is focused to excite only one lattice site. 
Consequently, the spectrum of the probe beam extends to cover higher-bands so that 
higher-band Bloch modes can be excited. Furthermore, simply by rotating the phase masks on 
the SLM, orientations of the incident dipole/quadruple beams relative to the lattice axes can be 
changed at will, permitting the investigation of soliton propagation under different initial 
conditions. 

3. Experimental and numerical results 

3.1 Self-trapping and rotation of dipole gap solitons 

In this section, we study self-trapping and rotation of second-band dipole solitons residing in 
the first Bragg reflection gap in optically induced 2D square photonic lattices. In these 
experiments, the square lattice (of spacing about 28μm) beam is diagonally oriented, and the 
intensity of the dipole beam is about four times weaker than that of the lattice beam. 

First, we present self-trapping of dipole gap soliton orientated in horizontal direction 
(horizontal excitation). Typical experimental results are shown in the top panels of Fig. 2. An 
out-of phase dipole beam is launched into the same lattice site [Fig. 2(a1)], and in this case, it 
excites the second band Bloch modes [17,22]. At a low bias field of 120V/mm, the dipole beam 
undergoes linear discrete diffraction [Fig. 2(a2)]. Along the direction of the principal axes of 
the square lattice, dipole “tails” beyond the central two spots can be seen, with an intensity 
pattern characteristic to the Bloch modes at the X-points of the second band [17,22]. At a high 
bias field of 180V/mm, the dipole beam is trapped at the output of the 10-mm long crystal, 
leading to the formation of dipole gap soliton [Fig. 2(a3)]. Phase measurement (inset in [Fig. 
2(a3)]) by interfering the output with an inclined plane wave indicates that the initial out-phase 
structure is well preserved when the dipole soliton is formed. Moreover, spatial spectrum of the 
self-trapped dipole soliton is also measured. It is shown that most of the spectrum power is 
located alongside the first BZ and close to four X-points [Fig. 2(a4)], confirming again the 
dipole gap soliton is bifurcated from the second Bloch band. For comparison, we numerically 
study the formation of dipole gap soliton with the parameters similar to those from the 
experiment. The numerical model is a nonlinear wave equation with a 2D square lattice 
potential under self-focusing photorefractive nonlinearity and can be described by the 
following equation [19–22]: 

 21
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is the nonlinear refractive index change; 33γ is the electro-optic 

coefficient; 0E is the applied direct current (dc) field, and lI is the lattice intensity; 2∇ is the 

Laplacian in the transverse ( , )x y plane. Numerical results are shown in the bottom panels of 

Fig. 2 after the same propagation length (10mm) for direct comparison. One can see that there is 
an excellent agreement between experimental and numerical results. 
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Fig. 2. Experimental (top) and numerical (bottom) results of self-trapping of dipole gap solitons. 
(a1), (b1) input dipole beams; (a2), (b2) linear diffractions; (a3), (b3) nonlinear outputs; and (a4), 
(b4) k-space spectra of (a3), (b3). Inset in (a1) shows lattice pattern with circles marking the 
dipole input position. Inset in (a3) shows interferogram of the corresponding nonlinear output. 
White dashed squares in (a4), (b4) represent the first Brillouin Zone of the square lattice. 

A fascinating property of dipole gap solitons is that they can rotate around particular axes of 
the lattices when the orientation of the incident dipole beam is slightly twisted relative to the 
symmetry axes of the lattices. To demonstrate the dipole gap soliton rotation experimentally, 
we launch an input dipole beam with an initial ± 10° angle relative to the horizontal axis in Fig. 
2(a1) and keep other experimental parameters unchanged. Results are presented in Fig. 3, 
where Figs. 3(a) and 3(c) show the input dipole beams and Figs. 3(b) and 3(d) show the 
corresponding nonlinear output. It can be clearly seen that, with the same nonlinear excitation, 
the input dipole beam self-traps into a dipole gap soliton, but it rotates oppositely (clockwise in 
[Fig. 3(b)] and counterclockwise in [Fig. 3(d)]) depending on its initial orientation. 

 

Fig. 3. Experimental results of dipole gap soliton rotation. (a), (c) input dipole beams with 
different orientations; (b), (d) nonlinear output of dipole gap solitons. The long thin dashed lines 
mark the horizontal direction, while the short thick lines illustrate the dipole orientation. 

Experimentally, it is a challenge to explore the rotation dynamics in detail due to a limited 
propagation distance (crystal length). Our numerical analysis suggests that the dipole rotation 
will not stay along one direction, but it will rotate back and forth so long as it propagates for 
sufficient long distances. As an example, we consider the situation in Fig. 3(a) for 
demonstration and set the propagation distance to Z = 140mm. Results are illustrated in Fig. 4 
(see Media 1). Figure 4(a) shows the input dipole beam and Figs. 4(b) and 4(c) represent 
nonlinear localized states where the rotation starts to reverse. It is shown that the dipole soliton 
rotates clockwise at first until it transforms into the state depicted in Fig. 4(b) (Z = 55mm). 
Then, the rotating direction is reversed and the dipole soliton starts to rotate counterclockwise, 
transforming into the state at Z = 110mm [Fig. 4(c)]. Thereafter, the dipole soliton will repeat 
such rotation periodically during propagation. In fact, similar phenomena have also been 
observed in our experiment for the dipole solitons orientated in vertical direction. Our analysis 
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shows that the dipole solitons orientated in lattice principle axes and diagonal axes (i.e., 
horizontal and vertical axes) are stable, while in other initial orientations the dipole solitons 
tend to rotate around the closest horizontal and vertical axes (Note that the principle axes of the 
square lattice are oriented in the 45° diagonal directions as shown in the insert of the Fig. 2). 
One possible explanation for such dipole rotation is that the dipole solitons with an initial angle 
relative to one of the lattice axes can be considered as a coherent superposition of two stationary 
dipole solitons along two perpendicular directions (one is the stable component oriented in 
horizontal direction, and the other in vertical direction, and the two dipoles have the same 
propagation constant) with a different ratio between the two components. Different angles of 
the dipole indicate different ratios of the two components. Periodic energy exchange between 
the two components via nonlinearity leads to the dynamic rotation or oscillation. 

 

Fig. 4. Simulation results of dipole soliton rotation (Media 1). (a) input dipole beam with a 10° 
initial angle relative to the horizontal direction; (b), (c) nonlinear output patterns of localized 
dipole states taken when the direction of rotation starts to reverse. 

3.2 Self-trapping and rotation of higher-band quadruple-like solitons 

Similar experiments are conducted for the study of higher-band quadruple-like solitons by 
reconfiguring the initial phase of the input probe beam. It is important to note that, in order to 
open the high Bragg reflection gap and excite the higher-band Bloch modes of square lattice, a 
relatively higher intensity of the lattice beam (about 1.3 times) and a larger lattice spacing 
(about 34μm) are employed comparing with the above dipole soliton experiments. Typical 
experimental results of higher-band quadruple-like gap soliton are shown in the top row of Fig. 
5. An out-of phase quadruple beam is launched into the lattice and focused to excite a 
single-site as shown in Fig. 5(a). At a low bias field of 140V/mm, the quadruple beam exhibits 
linear discrete diffraction [Fig. 5(b)] with most of the energy coupled to nearby waveguides at 
the output of the crystal. At a high bias field of 220V/mm, the quadruple beam is self-trapped 
into a quadruple-like gap soliton with “quadruple” tails along the two principle axes [Fig. 5(c)], 
characterizing the Bloch modes of the third Bloch band [17,19]. Note that in the nonlinear case, 
both the intensity pattern [Fig. 5(c)] and the interferogram [Fig. 5(d)] clearly show that the 
phase structure at the output is well preserved. More importantly, the nonlinear power spectrum 
[Fig. 5(e)] reshapes and the energy transfers to the boundary of the second BZ, suggesting that 
the observed quadruple-like soliton resides in the second Bragg reflection gap. In fact, quite 
different from all previously observed solitons in 2D lattices, such a higher-gap quadruple-like 
soliton is bifurcated from the X points of the third Bloch band [17,19], which has not been 
experimentally demonstrated before. These observations are compared with our numerical 
simulation shown in the bottom row of Fig. 5 using the parameters similar to those of the 
experiments. It can be clearly seen that the numerical results are again in good agreement with 
our experimental results. Simulation also shows that the spectrum tends to settle into regions 
close to the four points of the second BZ boundary. 
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Fig. 5. Experimental (top row) and numerical (bottom row) results showing the formation of 
third-band quadruple-like gap soliton. Shown are (a) input quadruple beam; (b) linear 
diffraction; (c) nonlinear output; and (d), (e) corresponding interferogram and nonlinear Fourier 
spectrum. The dashed and solid white squares in (e) mark the 1st and 2nd BZ, respectively. (d) is 
zoomed-in with respected to (c) for better visualization. Inset in (a) shows the lattice pattern with 
circles marking the quadruple input position. 

Next, the quadruple orientation is changed while keeping other experimental parameters 
fixed for investigation of the quadruple-like soliton rotation. Results are presented in Fig. 6. 
Compared with the excitation shown in Fig. 5(a), the input quadruple beam in Figs. 6(a) and 
6(c) has an initial ± 5° angle relative to the lattices principle axes (Note that different from the 
dipole soliton rotation experiment, here we choose the lattices principle axes as the reference 
axes for better illustrating the rotating angle). It can be seen that the quadruple beams still can 
be self-trapped with the same nonlinearity but the orientations cannot be preserved [Figs. 6(b) 
and 6(d)] at the output of the crystal. So, similar to dipole gap soliton rotation, we find that such 
higher-band quadruple-like solitons also experience self-rotation once their orientation is 
deviated from the stable configuration. 

 

Fig. 6. Experimental results showing rotation of nonlinear localized quadruple-like gap solitons. 
(a), (c) the input quadruple beams with an ± 5° initial angles relative to the lattice principle axes; 
and (b), (d) their corresponding nonlinear outputs. The long thin dashed lines mark the direction 
of lattices principle axes, while the short thick lines illustrate the quadruple orientation. 

To explore the dynamics of the quadruple-like soliton rotation in detail, we also simulated 
the propagation of the quadruple-like soliton over a longer distance. We take the situation in 
Fig. 6(a) as an example. Our numerical analysis not only suggests that the quadruple-like 
soliton will experience rotation similar to dipole solitons but also reveals that the localized 
quadruple state becomes a rotating doubly-charged vortex (DCV) during rotation and 
undergoes charge-flipping when the rotating direction is reversed [23,24]. Typical results are 
shown in Fig. 7(see Media 2). Figure 7(a) depicts the input quadruple beam with the lattice 
pattern shown in the background and Fig. 7(b) represents the side-view of propagation to z = 
180mm. By analyzing the output states at different locations, we can find that the localized 
mode rotates around the principle lattices axis. Figures 7(c)-7(f) depict the output intensities 
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and phase structures corresponding to the propagation length Z = 96mm, 121mm, 145mm, 
169mm, where the four white dashed lines in Fig. 7(b) are located. Figures 7(c) and 7(e) are 
quadruple states where the rotation starts to reverse. The localized output state at z = 96mm is 
similar to the input and it rotates counterclockwise. Nevertheless, the intensity and phase 
structure at z = 121mm illustrate that the quadruple localized state develops into a vortex with a 
4π helical phase structure around the singular point (i.e., m = 2 vortex). Then, the DCV 
continues to rotate counterclockwise and breaks into a quadruple localized structure again until 
it propagates to z = 145mm [Fig. 7(e)]. Thereafter, such a quadruple state rotates clockwise, 
followed by the reappearance of a DCV with opposite charges m = −2, i.e., a charge-flipping 
occurs. In short, the entire intensity and phase distribution of the localized state varies during 
propagation, as represented by the periodic appearance of a quadruple structure, a m = + 2 
vortex, a quadruple structure again, and then a m = −2 vortex. To verify the phase structure, 
interferograms of the output states are shown in the bottom row of Fig. 7, which clearly shows 
that the out-of phase feature in the quadruple localized states [Figs. 7(c) and 7(e)] as well as 
charge-flipping during propagation [Figs. 7(d) and 7(f)]. In fact, different from dipole gap 
soliton rotation, the quadruple-like soliton rotation and appearance of DCV states with 
periodically charge-flipping arise from the superposition of eigenmodes belonging to different 
high-symmetry points (with different propagation constants) of the third band, as shown 
theoretically in our earlier work [19]. 

 

Fig. 7. Numerical results showing self-rotation of higher-band quadruple-like lattice soliton 
(Media 2). Top row: (a) input quadruple beam superimposed with the lattice pattern. (b) 
side-view of beam propagation to z = 180mm. Middle row: (c)-(f) nonlinear output intensities 
corresponding to the locations of white dashed lines in (b). From (c) to (f), z = 96mm, 121mm, 
145mm, 169mm. Bottom row: corresponding interferograms of the outputs. In all figures, the 
inset shows the phase structure where the blue color corresponds to zero phase, the red color 
corresponds to π phase. 

4. Summary 

In summary, we have demonstrated self-trapping and rotation of second-band dipole gap 
solitons as well as third-band quadruple-like gap solitons in 2D square photonic lattices with an 
appropriate self-focusing nonlinearity. In particular, we have shown that the quadruple-like 
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soliton residing in the second Bragg reflection gap experiences self-rotation during nonlinear 
propagation accompanied by transitions between quadruple and DCV states. Our experimental 
results are corroborated by numerical simulations. This work might prove relevant for the study 
of higher-band gap soliton dynamics in other discrete nonlinear systems beyond optics. 

Acknowledgments 

This work was supported by the National Key Basic Research Program of China 
(2013CB632703, 2013CB328702), the National Natural Science Foundation of China (NSFC) 
(11304165), International S\&T cooperation program of China (2011DFA52870), International 
cooperation program of Tianjin (11ZGHHZ01000), and the 111 Project (B07013). ZC 
acknowledges the support from NSF and AFOSR. 

 

#232806 - $15.00 USD Received 21 Jan 2015; revised 7 Feb 2015; accepted 9 Feb 2015; published 11 Feb 2015 
© 2015 OSA 23 Feb 2015 | Vol. 23, No. 4 | DOI:10.1364/OE.23.004397 | OPTICS EXPRESS 4405 




