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We present a simple, yet effective, approach for optical
induction of Lieb photonic lattices, which typically rely on
the femtosecond laser writing technique. Such lattices are
established by judiciously overlapping two sublattices (an
“egg-crate” lattice and a square lattice) with different perio-
dicities through a self-defocusing photorefractive medium.
Furthermore, taking advantage of the superposition of
localized flat-band states inherent in the Lieb lattices, we
demonstrate distortion-free image transmission in such
two-dimensional perovskite-like photonic structures. Our
experimental observations find good agreement with
numerical simulations. © 2016 Optical Society of America

OCIS codes: (130.2790) Guided waves; (230.0230) Optical devices;

(070.7345) Wave propagation.
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In general, the Bloch modes of any periodic structure are
extended indefinitely. However, a dispersionless energy band
system allows for the existence of completely flat bands, and
the corresponding linear Bloch modes are entirely localized de-
generate states due to the destructive combination of extended
wave functions [1]. This is particularly interesting because,
in this case, waves can stay localized in the continuum, even
without the presence of any defect [2], disorder [3] or nonlin-
earity [4]. Flat-band systems were originally explored and dem-
onstrated in the study of ferromagnetism, which appears in a
class of highly frustrated lattice models [5,6]. In recent years,
flat-band physical phenomena have attracted ever-increasing
attention, particularly in strongly correlated electron systems
[7] due to their possible role in understanding and realization
of topological insulators [8], fractional quantum Hall effect
[9,10], and superconducting transitions [11]. Intriguing features
also have been found when disorder and nonlinearity were in-
troduced to interplay between degenerated states of the flat band
[12–14]. The Lieb lattice, a face-centered square depleted lattice,
is one of the simplest and best known platforms to demonstrate
the features of flat-band systems. For example, very recently, Lieb
photonic lattices (an array of evanescently coupled waveguides

arranged in Lieb geometry) were realized with femtosecond laser
writing techniques, where direct observations of diffractionless
flat-band states became possible [15,16]. More interestingly, it
was theoretically predicted that photonic flat-band modes might
be used for diffraction-free image transmission [17]. Indeed,
photonic lattices are ideal systems for active control of light
propagation [2–4,18], and image transmission could be a typical
example of application. Nevertheless, thus far, flat-band-based
image transmission has not been demonstrated in experiment
to the best of our knowledge. In addition, while various propos-
als have been put up for generation of optical Lieb lattices
for cold atoms [19,20], Lieb lattices in photonics still rely on
advanced femtosecond laser writing techniques [15,16,21,22].

In this Letter, we present a simple, yet effective, method for
optical induction of Lieb photonic lattices, and we demonstrate
the first experimental observation of distortion-free flat-band
image transmission in such photonic structures. We show that
a Lieb lattice intensity pattern can be constructed merely by
overlapping two sublattices (an “egg-crate” lattice and a square
lattice) with different periodicities, and the corresponding
waveguide arrays with Lieb geometry can be optically induced
in a photorefractive crystal with a self-defocusing nonlinearity.
Our Lieb photonic lattices offer a convenient platform for
probing the flat-band states. Furthermore, by linearly combin-
ing several localized flat-band eigenstates as a probe image, we
experimentally observe the distortion-free flat-band image
transmission in the optically induced Lieb photonic lattices.

The structure of Lieb photonic lattices is illustrated in
Fig. 1(a) where each unit cell of the lattices consists of three
sites, A, B, and C, as denoted by blue, green, and red points,
respectively. The transmission band β�kx; ky� for Bloch modes
can be calculated from a paraxial Schrödinger-type equation
describing light propagation in photonic lattices [2–4,15–18]:

i
∂Ψ�x; y; z�

∂z
� −

1

2k0
∇2Ψ�x; y; z� − k0Δn�x; y�

n0
Ψ�x; y; z�

≡H 0Ψ�x; y; z�; (1)

where Ψ is the electric field envelope of the probe beam, �x; y�
are the transverse coordinates, z is the longitudinal propagation
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distance,∇2 is the transverse Laplacian operator, k0 is the wave-
number within the medium, n0 is the refractive index of the
nonlinear medium, and Δn is the induced index change that
forms the Lieb lattices. In Eq. (1), H 0 is the continuous
Hamiltonian of the system, whose eigenvalues are the longi-
tudinal wavenumbers (or the propagation constants). When
only considering the hopping between the nearest-neighbor lat-
tice sites,H 0 can be reasonably approximated by a tight-binding
Hamiltonian. In this case, the Bloch modes of Lieb lattices
are only distributed in three bands: a completely degenerated
flat band centered between two curved ones, with all three
bands intersecting at the high symmetric M points �kx � ky �
π� of the first Brillouin zone (BZ) [Fig. 1(b)] [15,16,19,20].
Similar to honeycomb lattices [23,24], the curved bands are
featured by the linear dispersion relation in the vicinity of
M points (also called Dirac points), leading to intriguing phe-
nomena such as conical diffraction [21], topological edge states
[22], and pseudo-spin [25]. Another significant feature in this
band structure is the presence of the flat band which comes
from local interference effect. The flat band is topologically pro-
tected, and its eigenstates are strictly localized modes whose en-
ergy does not hop to the neighboring sites [1,15–17]. In any
square plaquette of the lattice structure [Fig. 1(c)], a stationary
localized mode can be formed by taking the four B sites with
strictly zero amplitude, the other four sites with the same am-
plitude, but their phases alternate between �π. Light coupling
from A and C sites onto B sites cancels out as a result of de-
structive interference, which is the reason why the flat-band
mode will not be extended during linear propagation.

First, we discuss the idea of creating photonic Lieb lattices
by use of optical induction, a well-established technique that
translates a light intensity pattern into a positive (negative) re-
fractive index change under a self-focusing (self-defocusing)
nonlinearity in a photorefractive crystal [2–4,26]. To produce
an optical lattice that is invariant along the propagation
z-direction, a corresponding quasi-nondiffracting light pattern
is constructed by interference of several plane waves.
Unfortunately, one cannot find an appropriate interference pat-
tern associated with a Lieb lattice due to its unique lattice site
distribution [Fig. 1(a)]. Consequently, it is necessary to use the
superposition of two or more optical patterns that are mutually
incoherent to each other, as realized for one-dimensional super-
lattices [27]. In our Letter, we use two sets of lattice beams,
namely an “egg-crate” lattice [28] and a square lattice, and
their overlapping pattern does not change in the longitudinal
direction. The constructing idea for Lieb lattices is illustrated
numerically in Fig. 2. Both light-field patterns depicted in

Figs. 2(a) and 2(b) are produced by four-beam interference,
whose superimposed spatial spectrum and intensity are shown
in Figs. 2(c) and 2(d), respectively. More specifically, by applying
a proper π∕2 phase difference among the four lattice-inducing
beams, a perfect “egg-crate” light pattern can be constructed
[Fig. 2(a)]. Mathematically, its complex amplitude is expressed
as V e�x;y��V 1�exp�ikx��exp�iky�iπ∕2��exp�−ikx�iπ��
exp�−iky�3iπ∕2��, having minima at lattice sites R �
�mD; nD� (m and n are integers) [28]. Here, k � π∕D
is the optical wave vector, where D is the “egg-crate” lattice
constant. As for the square lattices, there is no additional
phase difference between the four beams, i.e., V s�x; y� �
V 2

P
σ��1 exp�iσk�x � y�∕2�. (V 1 and V 2 correspond to

the amplitudes of the two lattice-inducing beams.) Note that
these beams are properly titled to make sure that the intensity
maxima of the square pattern match the intensity minima of
the “egg-crate” pattern. The resulting optical field, formed by
incoherent overlapping the two lattice waves, could be repre-
sented by I�x; y� � jV ej2 � jV sj2. The intensity pattern
I�x; y� for V 1 � V 2 � 1 [Fig. 2(d)] reveals that the intensity
minima form the structure of the Lieb lattices. Therefore, an
optical Lieb lattice can be induced by employing the self-
defocusing nonlinearity [Fig. 2(e)]. To further characterize the
structure of the lattices, we numerically calculate its BZ which
has a structure in Fourier space similar to that of a square lattice
due to their similarity in symmetry [Fig. 2(f )].

For the experimental demonstration, we use a continuous
wave (CW) laser operating at 488 nm for both inducing and
probing the Lieb lattices and a strontium barium niobate (SBN)
crystal as the photorefractive material which provides a self-
defocusing nonlinearity under a proper bias field. The experi-
mental setup is similar to that used in [24] and the same as the
method for generation of one-dimensional superlattices [27];
now two ordinarily polarized partially coherent beams, each
passing through an amplitude mask, are used for generating
the “egg-crate” and square lattice beams. To minimize the effect
of photorefractive anisotropy in the crystal, the two sets of lattice
beams are rotated at 45° relative to the horizontal-vertical axes.

Fig. 2. Numerical results of optical induction of Lieb photonic
lattices. (a) “Egg-crate” lattice pattern with a period of D. (b) Square
lattice pattern with a period of 2D. (c) Fourier spectrum of the two
lattice-forming beams, where the inner and outer squares represent
the corresponding spectrum for lattices in (b) and (a), respectively.
(d) Superimposed lattice pattern. (e) Optically induced waveguide
arrays. (f ) Corresponding extended BZ with the high symmetry points
marked by red points. Dashed squares in left four panels mark the
same overlapping square zone.

Fig. 1. (a) Lieb lattice with each unit cell (dashed square) consists of
three lattice sites marked as A, B, and C. (b) Band structure in the
tight-binding approximation. (c) Fundamental mode of flat-band
localized degenerate eigenstates. Sites with nonzero amplitudes are
denoted by solid (colored) circles; their amplitudes are the same,
but the phases alternate between �π.
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Figure 3 shows typical experimental results corresponding to
Fig. 2. The period of the “egg-crate” lattice field [Fig. 3(a)]
is 26 μm, and that of the square lattice [Fig. 3(b)] is 52 μm.
The ratio between the peak intensities of the two lattices is
about 1:1.5. The spatial spectrum and intensity of their inco-
herent superposition are shown in Figs. 3(c) and 3(d), respec-
tively. Both ensure and reveal that the intensity maxima of
the square pattern exactly fill in the intensity minima of the
“egg-crate” pattern. To visualize the induced Lieb lattice exper-
imentally, we illuminate a weak extraordinarily polarized quasi-
plane wave to probe the waveguide array induced in the crystal.
At the back facet of the crystal, we can see that the otherwise
uniform probe beam is guided into each lattice site, indicating a
perfect Lieb lattice waveguide structure already established
[Fig. 3(e)]. As seen in Figs. 2(e) and 3(e), our induced Lieb
lattices are more uniform in both directions along the lattice
principal axes, as compared to those fabricated using the femto-
second laser writing technique which are somewhat anisotropic
[15,16]. The BZ spectrum of the induced lattices is measured
by using the BZ spectroscopy [Fig. 3(f )] [29]. Six dark stripes
(shown by two horizontal and four oblique dashed lines) appear
in the power spectrum of the probe beam due to Bragg reflec-
tions near the boundaries of the BZs of the lattices. Compared
with the calculated results [Fig. 2(f )], only the first two BZs are
revealed. The first BZ is apparent, while the second comes into
view partially since two vertical lines are missing as a result of
the anisotropy of the crystal [28].

Next, we discuss excitation of flat-band modes and obser-
vation of distortion-free image transmission in the optically
induced Lieb photonic lattices. As mentioned above, a flat band
is composed of entirely degenerate localized states. As a result
of this degeneracy, the superposition of these states is also an
eigenstate of the system and, therefore, displays no diffraction.
Thus, any desired image constructed as a combination of
several degenerate modes will propagate stably. To demonstrate
this feature, let us first look at the propagation dynamics of the
fundamental flat-band mode [Fig. 1(c)] using the paraxial equa-
tion [Eq. (1)]. Simulation results are shown in the top row of
Fig. 4. The lattice constant is set to 26 μm to match the experi-
ment parameter. A quadruple beam with out-of-phase structure
characterizing the fundamental flat-band mode is employed as
the input that excites only lattice sites A and C as shown in
Fig. 4(a). Figures 4(c) and 4(d) show the corresponding linear

output and interference pattern after propagating 10 mm
through the crystal (which corresponds to about a 1.5 coupling
length in the lattices). It can be clearly seen that the linear out-
put stays well localized in the initially excited four lattice sites
[Fig. 4(c)], experiencing no diffraction during propagation.
Moreover, both phase diagram [inset in Fig. 4(c)] and phase
measurement [Fig. 4(d)] by interfering the output with an in-
clined plane wave indicate that the initial out-of-phase structure
is also well preserved. For comparison, if the input quadruple
beam is initially in-phase instead, the flat-band mode cannot be
excited, and the output displays discrete diffraction with beam
intensity evolving into several nearby lattice sites [Fig. 4(b)].
Interestingly, as a specific example to demonstrate the
distortion-free flat-band image transmission, we keep other
parameters unchanged, but construct a letter “L” as a probe
beam to excite the lattices. Results are shown in the middle row
of Fig. 4. For simplicity, the letter “L” is overlaid only by a train
of four fundamental modes with no overlapping region
[Fig. 4(e)]. When the image is composed of the fundamental
flat-band modes in which all sites are kept out of phase, a dis-
tortion-free image transmission is realized [Fig. 4(g)], and the
phase structure is also well preserved [Figs. 4(g) and 4(h)].
However, this is certainly not the case when all the sites of the
image are in phase [Fig. 4(f )]. Instead, in the latter case, the
input image no longer can be preserved. Figures 4(i) and 4(j)
in the bottom row of Fig. 4 show the side view of propagation
corresponding to Figs. 4(f ) and 4(g), respectively, which reveals
clearly the distorted and undistorted image transmission. It
should be noted that for lattice constant and propagation length
considered in our Letter, the effect of next-nearest neighbor
interactions appears to be negligible due to the weak coupling
interaction coming from well-separated lattices. We perform
simulations for different lattice constants and find that the fun-
damental localized mode cannot be exited after 10 mm propa-
gation in lattices withD ≤ 22 μm. This is because in the strong
coupling region, the next-nearest neighbor coupling is non-
negligible, and the flat band cannot preserve [16].

Fig. 4. Numerical results of linear propagation of a fundamental
flat-band mode (top row) and an L-shaped image (middle row)
through Lieb photonic lattices. (a), (e) Input. (b), (f ) In-phase output
of discrete diffraction. (c), (g) Out-of-phase output of the preserving
pattern. (d), (h) Interferogram of (c) and (g) (zoomed-in for better
visualization, and only the interference pattern of the central four sites
in (g) is shown). (i), (j) Side view of beam propagation corresponding
to (f ) and (g) along the direction of the dashed white line in (f ).

Fig. 3. Experimental results of optical induction of Lieb photonic
lattices in a 10 mm long nonlinear crystal corresponding to Fig. 2. The
principal axes of the lattices are oriented in diagonal (rather than hori-
zontal-vertical) directions for reasons discussed in the text.
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Finally, we present experimental results of the flat-band-
based text or image transmission. To generate the input probe
beams as shown in Figs. 4(a) and 4(e), a phase-only spatial light
modulator (SLM) is used so that we can control the intensity
pattern, as well as the phase structure of the probe beam. We
simultaneously encode the amplitude and phase information
onto the SLM by designing a hologram (phase mask) consisting
of several phase gratings arranged in a square or L-shaped struc-
ture. Then, an extraordinarily polarized quasi-plane wave is sent
to the SLM, and the first order of the diffracted light whose
intensity distribution has a desired pattern is imaged to the facet
of the crystal as a probe beam. The size of each light spot of the
probe beam at the lattice input facet is controlled by the im-
aging lens, and the spacing between the light spots is controlled
via adjusting the phase gratings. At the same time, the relative
phase between the spots is controlled by changing the relative
locations of the gratings. Once the probe beam is shaped for the
desired exciting condition, it is sent into the induced Lieb lat-
tices, and the output pattern is monitored in the back facet of
the crystal. Typical experimental results are shown in Fig. 5. In
Figs. 5(b) and 5(f ), we observe that the beam profiles with uni-
form phase structure are destroyed and diffract to the nearby
lattice sites. However, the intensity patterns [Figs. 5(c) and
5(g)] and the interferograms [Figs. 5(d) and 5(h)] clearly reveal
that the out-of phase inputs can be well preserved after 10 mm
of propagation, indicating that this type of localization relies on
the phase structure of the input. The contrast of the discrete
diffraction and diffractionless patterns also reveal that the locali-
zation indeed results from flat-band modes rather than simple
waveguiding. Overall, our experimental results agree well with
our simulations.

Before closing, we would like to mention that the letter “L”
also can be constructed with zero amplitude sites in the super-
position region of the flat-band modes as was demonstrated in
Kagome lattices [17]. With the combination of these two
superposition methods, one can construct any desired text,
symbol, or image as the superposition of the flat-band modes
that can propagate robustly in the flat-band photonic lattices.

In summary, we have successfully developed a simple yet
effective approach to optically induce Lieb photonic lattices
and experimentally observed the distortion-free flat-band image
transmission in the resulting lattices. The diffractionless flat-
band states are unique to flat-band systems and provide a new

type of wave localization. The concept might be adopted for
further studies in other systems beyond optics.
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