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In this Letter, we demonstrate the first, to the best of our
knowledge, coherent propulsion with negative-mass fields
in an optical analog. We observe a self-accelerating state,
driven by a nonlinear coherent interaction of its two
components that are experiencing diffractions of oppo-
site signs in a photonic lattice, which is analogous to
the interaction of two objects with opposite mass signs.
Surprisingly, the coherent propulsion is highly immune
to the initial phase of the two components, which is in
sharp contrast with the behavior encountered in traditional
coherent wave interactions. Compared to its incoherent
counter-part, the coherent propulsion exhibits an enhanced
acceleration. ©2019Optical Society of America

https://doi.org/10.1364/OL.44.005949

In the framework of classical mechanics [1,2], positive-mass
matter is illustrated as continuously driven by hypothetical
negative-mass matter, merely by their mutual interaction. The
action–reaction symmetry, governed by Newton’s third law,
is broken in such a captivating negative-mass propulsion, yet,
counterintuitively, abiding to both energy and momentum con-
servation. To the best of our knowledge, such a propulsion has
been first demonstrated by using two optical pulses experiencing
dispersions of opposite signs [3,4], analogous to two objects
with opposite mass signs. Quite recently, it has also been realized
in a mass–spring system [5] and in a photonic lattice, where
self-bending light was observed [6]. However, limited by classi-
cal mechanics, where the concept of negative-mass propulsion
stems from, those prior studies overlooked the coherence effects
that may strengthen the interaction force as simply inferred
from a constructive interference.

Indeed, coherence and interference were even rarely involved
in the interplay of two entities of the same mass until the advent
of solitons [7] that exhibit properties of both waves and particles,

and hence become excellent tools to uncover the mechanism
behind coherent interactions. As mostly demonstrated in non-
linear optics [8–12] and Bose–Einstein condensates [13,14],
the phase difference between solitons enables fruitful interac-
tion scenarios. For instance, in homogenous media, two bright
solitons initially set to be in phase or out of phase exhibit attrac-
tion or repulsion [9]. Those dramatically distinct interaction
behaviors were also realized in the coherent interaction of lat-
tice solitons in photonic lattices [11,12]. Although coherence
brings about an ease control of the interacting force between
solitons, it is detrimental for maintaining a unidirectional
propulsion against environmental perturbations. However, as
we shall demonstrate here, this scenario is changed dramatically
for a negative-mass propulsion in the coherent regime, where
coherent interaction leads to an altogether high stability.

In this Letter, we demonstrate the first coherent propul-
sion with negative-mass fields in an optical analog. A coherent
self-accelerating state is realized in a photonic lattice, driven
by the interaction of its intrinsic components of positive-mass
and negative-mass fields. In sharp contrast with the behav-
ior encountered in traditional coherent wave interactions,
the coherent propulsion shows a high immunity to the initial
phase variation of the two fields. In addition, it exhibits an
enhancement of acceleration as compared with its incoherent
counterpart.

Our experimental setup is schematically illustrated in
Fig. 1(a). A collimated broad beam (via expanding a CW green
laser light at the 532 nm wavelength) illuminates a spatial light
modulator (SLM, PLUTO, Holoeye) imposed with a proper
phase pattern. Then through a 4 f system (a couple of cylin-
drical lenses) together with a 10× microscope objective, we
generate the desired input beam at the front facet of a waveguide
array (the length is 14 mm and the lattice period3 is 6.8 µm),
which is fabricated by titanium in-diffusion in a nonlinear

0146-9592/19/245949-04 Journal © 2019Optical Society of America

https://orcid.org/0000-0001-8279-0103
https://orcid.org/0000-0001-7050-9943
mailto:zgchen@nankai.edu.cn
mailto:jjxu@nankai.edu.cn
mailto:yihu@nankai.edu.cn
https://doi.org/10.1364/OL.44.005949
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.44.005949&amp;domain=pdf&amp;date_stamp=2019-12-06


5950 Vol. 44, No. 24 / 15 December 2019 /Optics Letters Letter

Fig. 1. (a) Experimental setup. P, polarizer; HWP, half-wave
plate; M, mirror; CL, cylindrical lens with f = 200 mm; L, convex
lens with f = 150 mm; BS, 50/50 beam splitter; MO, microscope
objective; LNWA, lithium niobate waveguide array; CCD1, CCD2,
charged coupled device. (b) Dispersion diagram of the first Bloch band
associated with the lattice being tested. (c) Phase pattern employed
for generating the 0- and M-beam simultaneously. (d) and (e)
Experimentally captured input beams to match the modes of the band
edges in (b).

photorefractive LiNbO3 crystal that has a self-defocusing non-
linearity arising from the bulk photovoltaic effect [6]. As a result
of the periodic refractive index distribution, the diffraction
relationship in this optical structure can be described by the
Bloch bands [15]. Figure 1(b) presents the first band (propaga-
tion constant β versus transverse vector kx ) of our sample in the
first Brillouin zone (BZ). Analog to the effective mass defined
for electronic states in crystals [16], the optical beams that can
match the Bloch modes around the top (0) and the bottom
(M) edges would undergo normal and anomalous diffraction,
and thus they are defined as positive- and negative-mass fields
(denoted as 0-beam and M-beam), respectively. Considering
that the two fields are generally produced by a Gaussian beam
and a cosine-Gaussian beam, the phase mask shown in Fig. 1(c)
is employed to impose on the SLM. It has three stripes with the
same linear phase modulation (wrapped between 0 and 2π )
along the vertical direction, allowing parts of the beam that do
not illuminate on the stripes to be filtered, and leaving only three
narrow beams to inject into the 10× objective. Apart from the
vertical modulation, its central stripe is overlapped with a linear
phase modulation along the horizontal direction to control
the spacing (denoted as D) between the 0- and M-beam at the
input. Individual 0- and M-beams can be generated by switch-
ing on the phase patterns that merely duplicate the central and
outer stripes in Fig. 1(c), respectively. Their profiles, featured
with an in-phase and a stagger-phase structure, are shown as
typical examples in Figs. 1(d) and 1(e), as captured by CCD1.

Mathematically, the fields of the 0- and M-beams can be
expressed as ψ0 = A0 exp[(x − D/3)2/W2

0] exp(i1φ) and
ψM = AM cos(π x ) exp(x 2/W2

M), where x is the transverse
dimension normalized by the lattice constant, A0 and AM are
the amplitudes, W0 and WM determine the beam widths, and
1φ is the phase difference between the two beams, which can be
readily controlled by the phase mask. Without loss of generality,
D is kept positive. As presented in Ref. [6], the0- and M-beams
show inverted behaviors when encountering a negative index
change embedded in a uniform lattice. The former tends to be

Fig. 2. (a) Schematic coherent propulsion. (b) and (c) Numerically
calculated beam center shifts δ of the combined beam at the out-
put for different input conditions: (b) AM = 0.96 and WM = 6.2;
(c) AM = 2A0 = 0.96, WM =W0 = 6.2. Each pixel in (b) corre-
sponds to the maximum absolute value of δ when scanning the spacing
between the0- and M-beam.

repelled, while the latter tends to be attracted. Under the action
of the self-defocusing nonlinearity, both the 0- and M-beams
induce negative refractive index changes. When the two beams
propagate together with a beam-center mismatch, they can shift
to the same direction due to the symmetry breaking of action–
reaction, which is the origin of synchronized self-acceleration or
propulsion, as schematically shown in Fig. 2(a). Parameters of
both beams should be carefully chosen for a better observation
of the propulsion in our short crystal with a saturable nonline-
arity. One should, first of all, choose a proper beam width and
peak intensity for the M-beam, since the spreading for one side
of the beam needs to be suppressed by the nonlinear effect [3].
According to our experimental conditions, AM = 0.96 and
WM = 6.2 for the M-beam are employed, which can lead to a
soliton-like propagation in the absence of the0-beam.

Then, we use numerical simulations to choose the param-
eters of the 0-beam. Since the nonlinear evolution is mainly
driven by the photovoltaic-photorefractive effect rather than the
thermal effect, the steady state of the beam propagation can be
simulated using the following nonlinear Schrödinger equation
in a normalized form [17]:

i
∂ψ

∂z
+
∂2ψ

∂x 2
+ V (x )ψ = γ

|ψ |2

1+ |ψ |2
ψ, (1)

where ψ is the slowly varying complex amplitude of a beam; x
and z are the dimensionless transverse and longitudinal coor-
dinates, normalizing the laboratory coordinates X , Z by 3
and 2k32 (k is the wavenumber in the crystal), respectively;
V (x )= 2k32k0 Acos2(π x ) is the normalized periodic index
change of the waveguide array with A being the lattice modu-
lation depth and k0 being the wavenumber in vacuum; and
γ = k2

0n432γ33 E pv is the normalized nonlinear coefficient
with n being the unperturbed refractive index of the crystal,
γ33 being the electro-optic coefficient, and E pv being the pho-
tovoltaic field. In simulations (performed by the split-step
beam propagation method), the experimental parameters,
i.e., n = 2.3, γ33 = 280 pm/V, E pv = 400 V/cm, and
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A= 5.0× 10−4 are adopted. By using different parameters
of the 0-beam, we record the beam center shift at the output
that is defined as δ =CNL −CL , where CNL and CL are the
beam centers of a nonlinear and the corresponding linear (i.e.,
by letting γ = 0) output, and both of them can be calculated
by

∫
x |ψ |2dx/

∫
|ψ |2dx . Since the spacing D is positive, a

negative value of δ is expected [6]. A larger absolute value of δ
indicates a stronger acceleration of the propulsion. One can see
from Fig. 2(b) that there is an optimized parameter condition
for the 0-beam to reach the maximum shift of the beam center,
i.e., A0/AM ≈ 0.8, W0/WM ≈ 0.6. We intend to choose a
condition close to this optimized one, while considering sim-
plifying the experimental design. In the end, the central stripe
in the phase pattern imposed on SLM is set to have the same
width with the outer ones [Fig. 1(c)], corresponding to the
0-beam having the same beam width as the M-beam, but with
a half-peak intensity. In this case, although the shift of the beam
center is near one lattice constant less than the ideal case, it is
still considerable for experimental observation. Under the input
condition we employed, there is an optimized spacing (about
six times of the lattice constant) between the 0- and M-beam
for realizing the largest shift of the beam center, as seen from
Fig. 2(c). Using this spacing, one can realize an enhanced accel-
eration by simply increasing the input power of the two beams
together, but it is not recommended to use a quite large input
power considering the saturable nonlinearity that may reduce
the nonlinear propulsion.

In the first experiment, the two mutually coherent beams are
launched simultaneously into the waveguide array with an equal
phase (i.e.,1φ = 0) and a total input power of 9.83 µW. Their
spacing is set to be the optimized value, i.e., about six times of the
lattice constant. Taking the advantage of the noninstantaneous
photorefractive response, we are able to record the temporal
evolution of the beams existing in the lattice. As summarized in
Fig. 3(a), the combined output evolves from a widely spread dis-
tribution to a somewhat localized pattern; meanwhile the overall
beam center (defined as

∫
X dX

∫
IdY/

∫∫
IdX dY , where

I is the light intensity) at the steady-state moves along the −X
direction. The localization is attributed to discrete self-trapping
[17–20], while the lateral movement of the whole beam takes
place when its two components with opposite diffraction signs
break the action–reaction symmetry during interaction [6]. For
comparison, the output for the two beams having zero spacing
(overlapped centers at input) is presented in Fig. 3(b), where the
lateral shift of the beam center is almost not noticed. Numerical
beam propagations simulated by using Eq. (1) at a distance
longer than the sample length are shown in Figs. 3(c) and 3(d).
The combined beam experiences a self-accelerating effect for
the case of non-zero spacing between the 0- and M-beam
[Fig. 3(c)], while its pattern always remains symmetrical about
X = 0 for the other case [Fig. 3(d)]. Employing other initial
phase differences, the evolutions of coherent propulsion look
quite similar (this feature will be revisited later). The momen-
tum change of the light is accordingly revealed in the (spatial)
spectrum domain [Figs. 3(e, f )]. In the coherent propulsion,
both positive- and negative-mass components, located at the
center (kx3= 0) and boundary (kx3=±π ) of the 1st BZ,
respectively, exhibit a net shift due to the self-accelerating effect.

Next, we study the influence of the initial phase difference
between the 0- and M-beam on the coherent propulsion. The
phase difference can be altered at ease by adding a constant

Fig. 3. (a) and (b) Temporal evolution of the beam output under
the action of the nonlinearity when the initial spacing (D) between
the 0- and M-beam is (a) about six times of the lattice constant3 and
(b) zero, where the yellow lines mark the “center of mass.” Notice that
the outputs in (a) and (b) are shown at different intensity scales. (c) and
(d) show the numerical simulations of the beam propagations in a
steady state corresponding to (a) and (b), respectively, and the dashed
white lines mark the output location of our sample. (e) and (f ) Spatial
spectral evolution corresponding to (c) and (d), respectively.

value to the central stripe in Fig. 1(c). In the experiment, three
different input conditions (i.e., 1φ = 0, π/2, and π ) are con-
sidered, and a larger input power (20.52µW) is injected aiming
for an evident distinction from the incoherent case that will be
studied later. The nonlinear outputs, recorded at a steady state,
are shown in Figs. 4(a)–4(c). Although the output profiles (cal-
culated by

∫
IdY ) look inequivalent, the overall beam center

(as calculated from experimental data) changes hardly for the
three different cases. This phenomenon holds unchanged even
for a much longer propagation distance in simulations. The
phase-insensitive behavior for beam interactions arises from
the beating effect along the waveguide array. For our exam-
ple, the propagation constant difference at 0- and M-points
[Fig. 1(b)] is estimated to be ∼ 26 cm−1, corresponding to a
short beating length of 0.039 cm. Consequently, for a suffi-
ciently long distance, the coherent propulsion becomes immune
to the initial phase fluctuation. To verify our expectation, we
simulate the beam propagation up to the sample length by
employing phase differences varying from 0 to 2π , and we
calculate the relative change of the central position defined by
1δ = (δ − δ̄)/δ̄× 100%, where δ̄ =

∫ 2π
0 δdφ/(2π) is the

beam center’s average shift that varies along the propagation.
The numerical calculations are summarized in Fig. 4(e). At the
very early stage of the propagation, the beam center of the com-
bined beam varies dramatically with the initial phase difference.
After a short distance (say, Z = 0.25 cm), the relative change
of the beam’s central position becomes small and tends to be
smaller along the propagation. This indicates that the coherent



5952 Vol. 44, No. 24 / 15 December 2019 /Optics Letters Letter

Fig. 4. (a)–(d) Measured nonlinear output intensity profiles (a)–
(c) for the coherent case with three typical initial phase differences
between the 0- and M-beam, and (d) for the incoherent case.
(e) Numerically calculated change of the beam center position rel-
ative to the average change in a coherent propulsion using various
initial phase conditions (here we employ 65 phase differences equally
distributed between 0 and 2π ), where the dashed line corresponds to
the incoherent case for reference.

propulsion can resist the initial phase variation, as observed in
our experiment [Figs. 4(a)–4(c)].

Then we switch the interaction to the incoherent regime.
For this purpose, we make a movie including 60 phase patterns
similar to Fig. 1(c) to change the phase difference (i.e., 1φ)
gradually from 0 to 2π . This movie is played in a loop mode at
the maximum refresh rate (i.e., 60 Hz) of the SLM. Since the
fluctuation of phase difference between the 0- and M-beam
is much faster than the nonlinear response of our crystal [21],
the interaction of the two beams becomes incoherent. Thus,
except for the phase relationship between the 0- and M-beam,
the experiments for coherent and incoherent propulsion are
performed under the same conditions. After the same evolution
period as for the coherent case, the nonlinear outputs for the
0- and M-beams are recorded. Their intensity overlapping
is shown in Fig. 4(d). Compared with the coherent cases, the
output profile now shows a smaller shift of the beam’s central
position around 21 µm, which is 30% less than the averaged
lateral shift (∼ 30 µm) for the three coherent cases. In simula-
tion, the incoherent interaction is calculated using the following
coupled equations:

i
∂ψ0

∂z
+
∂2ψ0

∂x 2
+ V (x ) ψ0 = γ

|ψ0|
2
+ |ψM|

2

1+ |ψ0|2 + |ψM|
2
ψ0,

i
∂ψM

∂z
+
∂2ψM

∂x 2
+ V (x ) ψM = γ

|ψ0|
2
+ |ψM|

2

1+ |ψ0|2 + |ψM|
2
ψM.

(2)

The numerical calculation (∼ 28.4%) on the deduction of the
beam center shift is close to the measurement (i.e., 30%), which
in turn shows that the coherent propulsion exhibits nearly a
40% enhancement of the acceleration that is roughly assumed
as a constant. This is attributed to a stronger nonlinearity that

appears in the coherent case due to constructive interference. In
essence, larger refractive index changes can be induced, leading
to more intense beam deflections compared to the incoherent
propulsion.

In conclusion, in this Letter, we have demonstrated the
first coherent propulsion with analog positive- and negative-
mass fields in a simple optical setting, renewing the picture
of negative-mass propulsion proposed decades ago. Using
a photonic platform, we have shown a stable and synchro-
nized self-accelerating state of two mutually coherent fields
of opposite mass signs, immune to their initial phase differ-
ence. Compared with its incoherent counterpart, the coherent
propulsion exhibits altogether an enhanced acceleration. Our
work may bring about new possibilities for fundamental stud-
ies involving negative mass in a variety of physical systems as
well as for sought-after applications based on the principles of
negative-mass propulsion.
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